Chapter 07.08: Simpson’s 3/8 th Rule of Integration

Lesson: Simpson’s 3/8 th Rule

Learning Objectives

After successful completion of this lesson, you should be able to:

1)  derive the formula for Simpson’s 3/8 rule of integration,

2)  use Simpson’s 3/8 rule it to solve integrals,

3)  develop the formula for composite (also called multiple-segment) Simpson’s 3/8 rule of integration,

4)  use composite Simpson’s 3/8 rule of integration to solve integrals,

5)  compare true error formulas for composite Simpson’s 1/3 rule and composite Simpson’s 3/8 rule, and

6)  use a combination of Simpson’s 1/3 rule and Simpson’s 3/8 rule to approximate integrals.

   

Introduction

The main objective of this chapter is to develop appropriate formulas for approximating the integral of the form

\[I = \int_{a}^{b}{f(x)dx}\ \ \ (1)\]

Most (if not all) of the developed formulas for integration are based on a simple concept of approximating a given function \(f(x)\) by a simpler function (usually a polynomial function) \(f_{i}(x)\), where \(i\) represents the order of the polynomial function. In Chapter 07.03, Simpsons 1/3 rule for integration was derived by approximating the integrand \(f(x)\) with a 2nd order (quadratic) polynomial function.\(f_{2}(x)\)

\[f_{2}(x) = a_{0} + a_{1}x + a_{2}x^{2}\ \ \ (2)\]

Figure 1 \(\widetilde{f}(x)\) Cubic function.

In a similar fashion, Simpson 3/8 rule for integration can be derived by approximating the given function\(f(x)\) with the 3rd order (cubic) polynomial \(f_{3}(x)\)

\[\begin{split} \left. \ \begin{matrix} f_{3}(x) &= a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} \\ &= \left\{ 1,x,x^{2},x^{3} \right\} \times \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ \end{bmatrix} \\ \end{matrix} \right\}\ \ \ (3) \end{split}\]

which can also be symbolically represented in Figure 1.

   

Method 1

The unknown coefficients \(a_{0},\ a_{1},\ a_{2}\ \text{and} \ a_{3}\) in Equation (3) can be obtained by substituting 4 known coordinate data points \(\{ x_{0},f\left( x_{0} \right)\},\{ x_{1},f\left( x_{1} \right)\},\{ x_{2},f\left( x_{2} \right)\}\ \text{and}\ \{ x_{3},f\left( x_{3} \right)\}\) into Equation (3) as follows.

\[\left. \ \begin{matrix} f(x_{0}) = a_{0} + a_{1}x_{0} + a_{2}x_{0}^{2} + a_{3}x_{0}^{2} \\ f(x_{1}) = a_{0} + a_{1}x_{1} + a_{2}x_{1}^{2} + a_{3}x_{1}^{2} \\ f(x_{2}) = a_{0} + a_{1}x_{2} + a_{2}x_{2}^{2} + a_{3}x_{2}^{2} \\ f(x_{3}) = a_{0} + a_{1}x_{3} + a_{2}x_{3}^{2} + a_{3}x_{3}^{2} \\ \end{matrix} \right\}\ \ \ \ (4)\]

Equation (4) can be expressed in matrix notation as

\[\begin{bmatrix} 1 & x_{0} & x_{0}^{2} & x_{0}^{3} \\ 1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\ 1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\ 1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\ \end{bmatrix}\begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \\ \end{bmatrix} = \begin{bmatrix} f\left( x_{0} \right) \\ f\left( x_{1} \right) \\ f\left( x_{2} \right) \\ f\left( x_{3} \right) \\ \end{bmatrix}\ \ \ (5)\]

The above Equation (5) can symbolically be represented as

\[\left\lbrack A \right\rbrack_{4 \times 4}{\overrightarrow{a}}_{4 \times 1} = {\overrightarrow{f}}_{4 \times 1}\ \ \ (6)\]

Thus,

\[\overrightarrow{a} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \\ a_{4} \\ \end{bmatrix} = \left\lbrack A \right\rbrack^{- 1} \times \overrightarrow{f}\ \ \ (7)\]

Substituting Equation (7) into Equation (3), one gets

\[f_{3}\left( x \right) = \left\{ 1,x,x^{2},x^{3} \right\} \times \left\lbrack A \right\rbrack^{- 1} \times \overrightarrow{f}\ \ \ (8)\]

a)  As indicated in Figure 1, one has

b) 

\[\begin{array}{rl} x_{0} & =a \\ x_{1} & =a+h \\ & =a+\frac{b-a}{3} \\ & =\frac{2 a+b}{3} \\ x_{2} & =a+2 h \\ & =a+\frac{2 b-2 a}{3} \\ & =\frac{a+2 b}{3} \\ x_{3} & =a+3 h \\ & =a+\frac{3 b-3 a}{3} \\ &= b \end{array} \ \ \ (9)\]

With the help from MATLAB \(Ref. 2\), the unknown vector \(\overrightarrow{a}\) (shown in Equation 7) can be solved for symbolically.

   

Method 2

Using Lagrange interpolation, the cubic polynomial function \(f_{3}\left( x \right)\) that passes through 4 data points (see Figure 1) can be explicitly given as

\[\begin{split} f_{3}\left( x \right) &= \frac{\left( x - x_{1} \right)\left( x - x_{2} \right)\left( x - x_{3} \right)}{\left( x_{0} - x_{1} \right)\left( x_{0} - x_{2} \right)\left( x_{0} - x_{3} \right)} \times f\left( x_{0} \right) + \frac{\left( x - x_{0} \right)\left( x - x_{2} \right)\left( x - x_{3} \right)}{\left( x_{1} - x_{0} \right)\left( x_{1} - x_{2} \right)\left( x_{1} - x_{3} \right)} \times f\left( x_{1} \right)\\ & \ \ \ \ +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)} \times f\left(x_{3}\right)+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} \times f\left(x_{3}\right)\ \ \ (10) \end{split}\]

   

Simpsons 3/8 Rule for Integration

Substituting the form of \(\mathbf{{f}_{{3}}\left({x} \right)}\) from Method (1) or Method (2),

\[\begin{split} I &= \int_{a}^{b}{f\left( x \right){dx}}\\ &= \int_{a}^{b}{f_{3}\left( x \right){dx}}\\ &= \left( b - a \right) \times \frac{\left\{ f\left( x_{0} \right) + 3f\left( x_{1} \right) + 3f\left( x_{2} \right) + f\left( x_{3} \right) \right\}}{8}\ \ \ (11) \end{split}\]

Since

\[h = \frac{b - a}{3}\]

\[b - a = 3h\]

and Equation (11) becomes

\[I \approx \frac{3h}{8} \times \left\{ f\left( x_{0} \right) + 3f\left( x_{1} \right) + 3f\left( x_{2} \right) + f\left( x_{3} \right) \right\}\ \ \ (12)\]

Note the 3/8 in the formula, and hence the name of method as the Simpson’s 3/8 rule.

The true error in Simpson 3/8 rule can be derived as \(Ref. 1\)

\[E_{t} = - \frac{(b - a)^{5}}{6480} \times f^{\prime\prime\prime\prime}(\zeta) ,\ \text{where}\ a \leq \zeta \leq b\ \ \ (13)\]

   

Example 1

The vertical distance in meters covered by a rocket from \(t = 8\) to \(t = 30\) seconds is given by

\[s = \int_{8}^{30}{\left( 2000\ln\left\lbrack \frac{140000}{140000 - 2100t} \right\rbrack - 9.8t \right){dt}}\]

Use Simpson 3/8 rule to find the approximate value of the integral.

Solution

\[\begin{split} h &= \frac{b - a}{n}\\ &=\frac{b-a}{3}\\ &= \frac{30-8}{3}\\ &= 7.3333\end{split}\]

\[f(t) = 2000\ln\left\lbrack \frac{140000}{140000 - 2100t} \right\rbrack - 9.8t\]

\[I \approx \frac{3h}{8} \times \left\{ f\left( t_{0} \right) + 3f\left( t_{1} \right) + 3f\left( t_{2} \right) + f\left( t_{3} \right) \right\}\]

\[t_{0} = 8\]

\[\begin{split} f\left( t_{0} \right) &= 2000\ln\left( \frac{140000}{140000 - 2100 \times 8} \right) - 9.8 \times 8 \\ &= 177.2667 \end{split}\]

\[\begin{split} t_{1} &= t_{0} + h \\ &= 8 + 7.3333 \\ &= 15.3333 \end{split}\] \[\begin{split} f\left( t_{1} \right) &= 2000\ln\left( \frac{140000}{140000 - 2100 \times 15.3333} \right) - 9.8 \times 15.3333 \\ &= 372.4629\end{split}\]

\[\begin{split} t_{2} &= t_{0} + 2h \\ &= 8 + 2(7.3333) \\ &= 22.6666 \end{split}\] \[\begin{split} f\left( t_{2} \right) &= 2000\ln\left( \frac{140000}{140000 - 2100 \times 22.6666} \right) - 9.8 \times 22.6666 \\ &= 608.8976 \end{split}\]

\[\begin{split} t_{3} &= t_{0} + 3h \\ &= 8 + 3(7.3333) \\ &= 30 \end{split}\] \[\begin{split} f\left( t_{3} \right) &= 2000\ln\left( \frac{140000}{140000 - 2100 \times 30} \right) - 9.8 \times 30 \\ &= 901.6740\end{split}\]

Applying Equation (12), one has

\[\begin{split} I &= \frac{3}{8} \times 7.3333 \times \left\{ 177.2667 + 3 \times 372.4629 + 3 \times 608.8976 + 901.6740 \right\}\\ &=11063.3104m \end{split}\]

The exact answer can be computed as

\[I_{\text{exact}} = 11061.34m\]

   

Composite Simpson 3/8 Rule

Using \(n\) = number of equal segments, the width \(h\)can be defined as

\[h = \frac{b - a}{n}\ \ \ (14)\]

The number of segments need to be an integer multiple of 3 as a single application of Simpson 3/8 rule requires 3 segments.

The integral shown in Equation (1) can be expressed as

\[\begin{split} I &= \int_{a}^{b}{f\left( x \right){dx}}\\ &\approx \int_{a}^{b}{f_{3}\left( x \right){dx}}\\ &\approx \int_{x_{0} = a}^{x_{3}}{f_{3}\left( x \right){dx}} + \int_{x_{3}}^{x_{6}}{f_{3}\left( x \right){dx}} + ........ + \int_{x_{n - 3}}^{x_{n} = b}{f_{3}\left( x \right){dx}}\ \ \ (15) \end{split}\]

Using Simpson 3/8 rule (See Equation 12) into Equation (15), one gets

\[\begin{split} I &= \frac{3h}{8}\begin{Bmatrix} f\left( x_{0} \right) + 3f\left( x_{1} \right) + 3f\left( x_{2} \right) + f\left( x_{3} \right) + f\left( x_{3} \right) + 3f\left( x_{4} \right) + 3f\left( x_{5} \right) + f\left( x_{6} \right) \\ + ..... + f\left( x_{n - 3} \right) + 3f\left( x_{n - 2} \right) + 3f\left( x_{n - 1} \right) + f\left( x_{n} \right) \\ \end{Bmatrix}\ \ \ (16)\\ &= \frac{3h}{8}\left\{ f\left( x_{0} \right) + 3\sum_{i = 1,4,7,..}^{n - 2}{f\left( x_{i} \right)} + 3\sum_{i = 2,5,8,..}^{n - 1}{f\left( x_{i} \right)} + 2\sum_{i = 3,6,9,..}^{n - 3}{f\left( x_{i} \right)} + f\left( x_{n} \right) \right\}\ \ \ (17)\end{split}\]

   

Example 2

The vertical distance in meters covered by a rocket from \(t = 8\) to \(t = 30\) seconds is given by

\[s = \int_{8}^{30}{\left( 2000\ln\left\lbrack \frac{140000}{140000 - 2100t} \right\rbrack - 9.8t \right){dt}}\]

Use composite Simpson 3/8 rule with six segments to estimate the vertical distance.

Solution

In this example, one has (see Equation 14):

\[f(t) = 2000\ln\left\lbrack \frac{140000}{140000 - 2100t} \right\rbrack - 9.8t\]

\[h = \frac{30 - 8}{6} = 3.6666\]

\[\left\{ t_{0},f\left( t_{0} \right) \right\} = \left\{ 8,177.2667 \right\}\]

\(\left\{ t_{1},f\left( t_{1} \right) \right\} = \left\{ 11.6666,270.4104 \right\}\ \text{where}\ t_{1} = t_{0} + h = 8 + 3.6666 = 11.6666\)

\[\left\{ t_{2},f\left( t_{2} \right) \right\} = \left\{ 15.3333,372.4629 \right\}\ \text{where}\ t_{2} = t_{0} + 2h = 15.3333\]

\[\left\{ t_{3},f\left( t_{3} \right) \right\} = \left\{ 19,484.7455 \right\}\ \text{where}\ t_{3} = t_{0} + 3h = 19\]

\[\left\{ t_{4},f\left( t_{4} \right) \right\} = \left\{ 22.6666,608.8976 \right\}\ \text{where}\ t_{4} = t_{0} + 4h = 22.6666\]

\[\left\{ t_{5},f\left( t_{5} \right) \right\} = \left\{ 26.3333,746.9870 \right\}\ \text{where}\ t_{5} = t_{0} + 5h = 26.3333\]

\[\left\{ t_{6},f\left( t_{6} \right) \right\} = \left\{ 30901.6740 \right\}\ \text{where}\ t_{6} = t_{0} + 6h = 30\]

Applying Equation (17), one obtains:

\[\begin{split} I&= \frac{3}{8}\left( 3.6666 \right)\left\{ 177.2667 + 3\sum_{i = 1,4,..}^{n - 2 = 4}{f\left( t_{i} \right)} + 3\sum_{i = 2,5,..}^{n - 1 = 5}{f\left( t_{i} \right)} + 2\sum_{i = 3,6,..}^{n - 3 = 3}{f\left( t_{i} \right)} + 901.6740 \right\}\\ &= \left( 1.3750 \right)\begin{Bmatrix} 177.2667 + 3\left( 270.4104 + 608.8976 \right) \\ + 3\left( 372.4629 + 746.9870 \right) + 2\left( 484.7455 \right) + 901.6740 \\ \end{Bmatrix}\\ &= 11601.4696m \end{split}\]

   

Example 3

Compute

\[I = \int_{8}^{30}{\left\{ 2000\ln\left( \frac{140000}{140000 - 2100t} \right) - 9.8t \right\}{dt},}\]

using Simpson 1/3 rule (with \(n_{1} =4\)), and Simpson 3/8 rule (with \(n_{2} =3\)).

Solution

The segment width is

\[\begin{split} h &= \frac{b - a}{n}\\ &= \frac{b - a}{n_{1} + n_{2}}\\ &= \frac{30 - 8}{\left( 4 + 3 \right)}\\ &= 3.1429 \end{split}\]

\[f(t) = 2000\ln\left\lbrack \frac{140000}{140000 - 2100t} \right\rbrack - 9.8t\]

\[\begin{split} &{\left. \ \begin{matrix} t_{0} = a = 8 \\ t_{1} = x_{0} + 1h = 8 + 3.1429 = 11.1429 \\ t_{2} = t_{0} + 2h = 8 + 2\left( 3.1429 \right) = 14.2857 \\ t_{3} = t_{0} + 3h = 8 + 3\left( 3.1429 \right) = 17.4286 \\ t_{4} = t_{0} + 4h = 8 + 4\left( 3.1429 \right) = 20.5714 \\ \end{matrix} \right\}\text{Simpson's 1/3rule}}\\ &t_{5} = t_{0} + 5h = 8 + 5\left( 3.1429 \right) = 23.7143\\ &t_{6} = t_{0} + 6h = 8 + 6\left( 3.1429 \right) = 26.8571\\ &t_{7} = t_{0} + 7h = 8 + 7\left( 3.1429 \right) = 30 \end{split}\]

Now

\[\begin{split} f\left( t_{0} = 8 \right) &= 2000\ln\left( \frac{140,000}{140,000 - 2100 \times 8} \right) - 9.8 \times 8\\ &= 177.2667 \end{split}\]

Similarly:

\[f\left( t_{1} \right) = 256.5863\]

\[f\left( t_{2} \right) = 342.3241\]

\[f\left( t_{3} \right) = 435.2749\]

\[f\left( t_{4} \right) = 536.3909\]

\[f\left( t_{5} \right) = 646.8260\]

\[f\left( t_{6} \right) = 767.9978\]

\[f\left( t_{7} \right) = 901.6740\]

For several segments \(\left( n_{1} = \text{first}\ 4\ \text{segments} \right)\), using composite Simpson 1/3 rule, one obtains (See Equation 19):

\[\begin{split} I_{1} &= \left( \frac{h}{3} \right)\left\{ f\left( t_{0} \right) + 4\sum_{i = 1,3,...}^{n_{1} - 1 = 3}{f\left( t_{i} \right)} + 2\sum_{i = 2,...}^{n_{1} - 2 = 2}{f\left( t_{i} \right)} + f\left( t_{n_{1}} \right) \right\}\\ &= \left( \frac{h}{3} \right)\left\{ f\left( t_{0} \right) + 4\left( f\left( t_{1} \right) + f\left( t_{3} \right) \right) + 2f\left( t_{2} \right) + f\left( t_{4} \right) \right\}\\ &= \left( \frac{3.1429}{3} \right)\left\{ 177.2667 + 4\left( 256.5863 + 435.2749 \right) + 2\left( 342.3241 \right) + 536.3909 \right\} \\ &= 4364.1197 \end{split}\]

For several segments \(\left( n_{2} = \text{last 3 segments} \right)\), using single application Simpson 3/8 rule, one obtains (See Equation 17):

\[\begin{split} I_{2} &= \left( \frac{3h}{8} \right)\left\{ f\left( t_{0} \right) + 3\sum_{i = 1,3,...}^{n_{2} - 2 = 1}{f\left( t_{i} \right)} + 3\sum_{i = 2,...}^{n_{2} - 1 = 2}{f\left( t_{i} \right)} + 2\sum_{i = 3,6,..}^{n_{2} - 3 = 0}{f\left( t_{i} \right) +}f\left( t_{n_{1}} \right) \right\}\\ &= \left( \frac{3h}{8} \right)\left\{ f\left( t_{0} \right) + 3f\left( t_{1} \right) + 3f\left( t_{2} \right) + 2(\text{no contribution}) + f(t_{3}) \right\} \\ &= \left( \frac{3h}{8} \right)\left\{ f\left( t_{4} \right) + 3f\left( t_{5} \right) + 3f\left( t_{6} \right) + f(t_{7}) \right\}\\ &= \left( \frac{3}{8} \times 3.1429 \right)\left\{ 536.3909 + 3\left( 646.8260 \right) + 3\left( 767.9978 \right) + 901.6740 \right\}\\ &= 6697.3663 \end{split}\]

The mixed (combined) Simpson 1/3 and 3/8 rules give

\[\begin{split} I &= I_{1} + I_{2}\\ &= 4364.1197 + 6697.3663\\ &= 11061m \end{split}\]

c)  Comparing the truncated error of Simpson 1/3 rule

d)  \[E_{t} = - \frac{\left( b - a \right)^{5}}{2880} \times f^{\prime\prime\prime\prime}\zeta)\ \ \ (18)\]

With Simpson 3/8 rule (See Equation 12), it seems to offer slightly more accurate answer than the former. However, the cost associated with Simpson 3/8 rule (using 3rd order polynomial function) is significantly higher than the one associated with Simpson 1/3 rule (using 2nd order polynomial function).

The number of segments that can be used in the conjunction with Simpson 1/3 rule is 2, 4, 6, 8, … (any even numbers) for

\[\begin{split} I &= \int_{a}^{b}{f(x){dx}}\\ &\approx \left( \frac{h}{3} \right)\left\{ f\left( x_{0} \right) + 4f\left( x_{1} \right) + f\left( x_{2} \right) + f\left( x_{2} \right) + 4f\left( x_{3} \right) + f\left( x_{4} \right) + ... + f\left( x_{n - 2} \right) + 4f\left( x_{n - 1} \right) + f\left( x_{n} \right) \right\}\\&= \begin{array}{l} \quad\left(\displaystyle \frac{h}{3}\right)\left\{f\left(x_{0}\right)+4 \displaystyle\sum_{i=1,3, ...}^{n-1} f\left(x_{i}\right)+2 \sum_{i=2,4,6 ...}^{n-2} f\left(x_{i}\right)+\right. \left.f\left(x_{n}\right)\right\} \end{array}\end{split}\]

However, Simpson 3/8 rule can be used with the number of segments equal to 3,6,9,12,.. (can be certain integers that are multiples of 3).

If the user wishes to use, say 7 segments, then the mixed Simpson 1/3 rule (for the first 4 segments), and Simpson 3/8 rule (for the last 3 segments) would be appropriate.

   

Computer Algorithm for Mixed Simpson 1/3 and 3/8 Rule for Integration

Based on the earlier discussion on (single and composite) Simpson 1/3 and 3/8 rules, the following “pseudo” step-by-step mixed Simpson rules for estimating

\[I = \int_{a}^{b}{f(x){dx}}\]

can be given as

Step 1

User inputs information, such as

\[f(x) = \text{integrand}\]

\[n_{1} = \text{number of segments in conjunction with Simpson 1/3 rule (a multiple of 2 (any even numbers)}\]

\[n_{2}= \text{number of segments in conjunction with Simpson 3/8 rule (a multiple of 3)}\]

   

Step 2

Compute

\[n = n_{1} + n_{2}\]

\[h = \frac{b - a}{n}\]

\[x_{0} = a\]

\[x_{1} = a + 1h\]

\[x_{2} = a + 2h\] \[\vdots\]

\[x_{i} = a + ih\] \[\vdots\] \[x_{n} = a + nh = b\]

   

Step 3

Compute result from composite Simpson 1/3 rule (See Equation 19)

\[I_{1} = \left( \frac{h}{3} \right)\left\{ f\left( x_{0} \right) + 4\sum_{i = 1,3,...}^{n_{1} - 1}{f\left( x_{i} \right)} + 2\sum_{i = 2,4,6...}^{n_{1} - 2}{f\left( x_{i} \right)} + f\left( x_{n_{1}} \right) \right\}\ \ \ (19, repeated)\]

   

Step 4

Compute result from composite Simpson 3/8 rule (See Equation 17)

\[\begin{split} I_{2} = \left( \frac{3h}{8} \right)\left\{ f\left( x_{0} \right) + 3\sum_{i = 1,4,7...}^{n_{2} - 2}{f\left( x_{i} \right)} + 3\sum_{i = 2,5,8...}^{n_{2} - 1}{f\left( x_{i} \right)} + 2\sum_{i = 3,6,9,...}^{n_{2} - 3}{f\left( x_{i} \right) +}f\left( x_{n_{2}} \right) \right\}\ \ \ (17, repeated)\end{split}\]

   

Step 5

\[I \approx I_{1} + I_{2}\ \ \ (20)\]

and print out the final approximated answer for \(I\).

Multiple Choice Test

(1). Simpson 3/8 rule for integration is mainly based upon the idea of

(A) approximating \(\displaystyle {f(x)}\) in \(\displaystyle I = \int_{a}^{b}{f(x)dx}\) by a cubic polynomial

(B) approximating \(\displaystyle {f(x)}\) in \(\displaystyle I = \int_{a}^{b}{f(x)dx}\) by a quadratic polynomial

(C) Converting the limit of integral limits \(\lbrack a,b\rbrack\) into \(\lbrack - 1, + 1\rbrack\)

(D) Using similar concepts as Gauss quadrature formula

  

(2). The exact value of \(\displaystyle \int_{1}^{4}{(e^{- 2x} + 4x^{2} - 8)dx}\) most nearly is

(A) \(6.0067\)

(B) \(5.7606\)

(C) \(60.0675\)

(D) \(67.6075\)

  

(3). The approximate value of \(\displaystyle \int_{1}^{4}{(e^{- 2x} + 4x^{2} - 8)dx}\) by a single application of Simpson’s 3/8 rule is

(A) \(61.3740\)

(B) \(60.0743\)

(C) \(59.3470\)

(D) \(58.8992\)

  

(4). The approximate value of \(\displaystyle \int_{1}^{4}{(e^{- 2x} + 4x^{2} - 8)dx}\) by a composite Simpson’s 3/8 rule with n=6 segments is most nearly

(A) \(60.8206\)

(B) \(60.6028\)

(C) \(61.0677\)

(D) \(60.0675\)

  

(5). The approximate value of \(\displaystyle \int_{1}^{4}{(e^{- 2x} + 4x^{2} - 8)dx}\) by combination of Simpson’s 1/3 rule (n=6 segments) and Simpson’s 3/8 rule (n=3 segments) most nearly is

(A) \(60.0677\)

(B) \(59.0677\)

(C) \(61.0677\)

(D) \(59.7607\)

  

(6). Comparing Simpson’s 3/8 rule truncated error formula

\[E_{t} = - \displaystyle \frac{(b - a)^{5}}{6480} \times f^{(4)}\left( \zeta \right),\ a \leq \zeta \leq b,\]

with Simpson’s 1/3 rule truncated error formula

\[E_{t}=-\displaystyle \frac{(b-a)^{5}}{2880} f^{(4)}(\zeta),\ \quad a<\zeta<b\]

the following conclusion can be made.

(A) Simpson’s 3/8 rule is significantly more accurate than Simpson’s 1/3 rule

(B) It is worth it in terms of computational efforts versus accuracy to use Simpson’s 3/8 rule instead of Simpson’s 1/3 rule.

(C) It is worth it in terms of computational efforts versus accuracy to use Simpson’s 3/8 rule instead of Simpson’s 1/3 rule.

(D) Simpson’s 3/8 rule is less accurate than Simpson’s 1/3 rule.

Problem Set

(1). Compute the following integral exactly \[\int_{1}^{4}{x^{2}e^{(3x)}dx}\] Answer: \(7.3541 \times 10^5\)

/ /

(2). Using composite Simpson 3/8 rule (with \(n = 6\) “little” segments), compute the integral

\[\int_{1}^{4}{x^{2}e^{(3x)}dx}\] Answer: \(I = 784785.6554\)

/ /

(3). Using the MIXED composite Simpson 1/3 rule (with \(n_{1} = 4\) “little” segments), and Simpson 3/8 rule (with \(n_{2} = 6\) “little” segments), compute the integral \(\displaystyle \int_{1}^{4}{x^{2}e^{(3x)}dx}\)

Answer: \(I = 744173.7172\)

/ /

(4). Compute the following integral exactly \[\int_{\pi}^{2\pi}{x\sin(2x)}dx\]

Answer: \(I = -1.5708\)

/ /

(5). Using the single application Simpson 3/8 rule (with \(n_{2} = 3\) “little” segments), compute the integral \(\displaystyle \int_{\pi}^{2\pi}{x\sin(2x)}dx\)

Answer: \(I = -1.0684\)

/ /

(6). Using the composite Simpson 3/8 rule (with \(n_{2} = 6\) “little” segments), compute the integral \(\displaystyle \int_{\pi}^{2\pi}{x\sin(2x)}dx\)

Answer: \(I = -1.6026\)

/ /

(7). Using the MIXED, single-application Simpson 1/3 and 3/8 rules (with \(n_{1} = 2\), and \(n_{2} = 3\) “little” segments), compute the integral \(\displaystyle \int_{\pi}^{2\pi}{x\sin(2x)}dx\)

Answer: \(I = -1.7357\)