Informal Development of Fourier Series (CHAPTER 11.05)
Unscrambling the FFT: Determination of W^P: Part 1 of 3
Topic Description
Unscrambling the Fast Fourier Transform (FFT). Using the specific case example N=2^{(r=4)}=16, and graphical representation, the unscrambling phase (including the bit-reversing phase) of the FFT process is explained, in order to be able to obtain the original unknown complex numbers Cn in “proper orders”. Computer implementation of “unscrambling/bit-reversing phase” of the FFT process is explained. Computer implementation of FFT for computing a pair of “companion nodes” and avoiding complex number operations are also explained.
All Videos for this Topic
Informal Development of Fast Fourier Transform: Part 1 of 3 [YOUTUBE 09:59]
Informal Development of Fast Fourier Transform: Part 2 of 3 [YOUTUBE 12:39]
Informal Development of Fast Fourier Transform: Part 3 of 3 [YOUTUBE 09:46]
Fast Fourier Transform: Factorized Matrix & Operation Count: Part 1 of 4 [YOUTUBE 14:08]
Fast Fourier Transform: Factorized Matrix & Operation Count: Part 2 of 4 [YOUTUBE 14:48]
Fast Fourier Transform: Factorized Matrix & Operation Count: Part 3 of 4 [YOUTUBE 13:45]
Fast Fourier Transform: Factorized Matrix & Operation Count: Part 4 of 4 [YOUTUBE 11:49]
Fast Fourier Transform: Companion Node Observation: Part 1 of 3 [YOUTUBE 11:22]
Fast Fourier Transform: Companion Node Observation: Part 2 of 3 [YOUTUBE 12:56]
Fast Fourier Transform: Companion Node Observation: Part 3 of 3 [YOUTUBE 09:01]
Fast Fourier Transform: Determination of W^P: Part 1 of 4 [YOUTUBE 13:34]
Fast Fourier Transform: Determination of W^P: Part 2 of 4 [YOUTUBE 09:31]
Fast Fourier Transform: Determination of W^P: Part 3 of 4 [YOUTUBE 07:36]
Fast Fourier Transform: Determination of W^P: Part 4 of 4 [YOUTUBE 09:41]
Fast Fourier Transform: Unscrambling the FFT: Determination of W^P: Part 1 of 3 [YOUTUBE 15:07]
Fast Fourier Transform: Unscrambling the FFT: Determination of W^P: Part 2 of 3 [YOUTUBE 15:14]
Fast Fourier Transform: Unscrambling the FFT: Determination of W^P: Part 3 of 3 [YOUTUBE 14:32]
Complete Resources
Get in one place the following: Development of Fast Fourier Transform