Quiz Chapter 11.05: Informal Development of Fast Fourier Transform MULTIPLE CHOICE TEST (All Tests) INFORMAL DEVELOPMENT OF FAST FOURIER TRANSFORM (More on Informal Development of Fast Fourier Transform) FAST FOURIER TRANSFORMS (More on Fast Fourier Transforms) Pick the most appropriate answer 1. Using the definition W=e^{-i (2 \pi / N)}, and the Euler identity e^{\pm i \theta}= \cos (\theta) \pm i \sin (\theta), the value of W^{(N / 6)} can be computed as 0.866 - 0.5i -0.866 + 0.5i -0.5 - 0.866i 0.5 - 0.866i 2. Using the definition W=e^{-i (2 \pi / N)}, and the Euler identity e^{\pm i \theta}= \cos (\theta) \pm i \sin (\theta), the value of W^{(6N)} can be computed as 1 + i 1 - i 1 -1 3. Given N=2, and \{ f \} = \begin{Bmatrix} f(0) \\ f(1) \\ \end{Bmatrix} = \begin{Bmatrix} 14+6i \\ -2+4i \\ \end{Bmatrix} The first part of \widetilde{C}(n) = \displaystyle\sum_{k=0}^{N-1} f (k) W^{nk} can be expressed as \widetilde{C} (0) = \displaystyle\sum_{k=0}^{1} f(k)W^{nk} = f(0) W^{(0)(0)} + f(1)W^{(0)(1)} \, \widetilde{C} (1) = f(0)W^{(1)(0)} + f(1)W^{(1)(1)} The values for \begin{Bmatrix}\widetilde{C}(0)\\ \widetilde{C}(1) \\ \end{Bmatrix} can be computed as \begin{Bmatrix}12+10i\\16+2i \\ \end{Bmatrix} \begin{Bmatrix}10+12i\\2+16i \\ \end{Bmatrix} \begin{Bmatrix}-12+10i\\-16+2i \\ \end{Bmatrix} \begin{Bmatrix}10-12i\\2-16i \\ \end{Bmatrix} 4. For N=2^{4}=16, level L=3 and referring to figure 1 (shown in this link), the only terms of vector f_{2}(-) which only need to compute are f_{2}(4-7, \, 12-15) f_{2}(0-3, \, 8-11) f_{2}(0-7) f_{2}(8-15) 5. For N=2^{4}=16, level L=3 and referring to figure 1 (shown in this link), the only companion nodes associated with f_{3}(0) and f_{3}(1) are f_{3}(4) and f_{3}(5) f_{3}(6) and f_{3}(7) f_{3}(14) and f_{3}(15) f_{3}(2) and f_{3}(3) 6. Given N=4, and f_{0} \left( \begin{matrix} 0 \\ 1 \\ 2 \\ 3 \\ \end{matrix} \right) = \begin{Bmatrix} -4+i \\ 1-2i \\ -2+3i \\ 3-4i \\ \end{Bmatrix} Corresponding to level L=1, one can compute f_{3}(2) as -2-2i 4-6i 4-6i -4-4i Loading …