Quiz Chapter 04.08: Gauss-Seidel Method MULTIPLE CHOICE TEST (All Tests) GAUSS-SEIDEL METHOD (More on Gauss-Seidel Method) SIMULTANEOUS LINEAR EQUATIONS (More on Simultaneous Linear Equations) Pick the most appropriate answer 1. A square matrix \left[ A \right]_{n \times n} is diagonally dominant if \left| a_{ii} \right| \geq \displaystyle\sum_{_{i \neq j}^{j=1}}^{n} \left| a_{ij} \right| , \, i=1,2,...,n \left| a_{ii} \right| \geq \displaystyle\sum_{_{i \neq j}^{j=1}}^{n} \left| a_{ij} \right| , \, i=1,2,...,n and \left| a_{ii} \right| > \displaystyle\sum_{_{i \neq j}^{j=1}}^{n} \left| a_{ij} \right| , \, i=1,2,...,n \left| a_{ii} \right| \geq \displaystyle\sum_{j=1}^{n} \left| a_{ij} \right| , \, i=1,2,...,n and \left| a_{ii} \right| > \displaystyle\sum_{j=1}^{n} \left| a_{ij} \right| , \, i=1,2,...,n \left| a_{ii} \right| \geq \displaystyle\sum_{j=1}^{n} \left| a_{ij} \right| , \, i=1,2,...,n 2. Using \begin{bmatrix} x_{1}&x_{2}&x_{3} \\ \end{bmatrix} = \begin{bmatrix} 1&3&5 \\ \end{bmatrix} as the initial guess, the value of \begin{bmatrix} x_{1}&x_{2}&x_{3} \\ \end{bmatrix} after three iterations of Gauss-Seidal method is \begin{bmatrix} 12&7&3 \\ 1&5&1 \\ 2&7&-11 \\ \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 2 \\ -5 \\ 6 \\ \end{bmatrix} \begin{bmatrix} -2.8333&-1.4333&-1.9727 \\ \end{bmatrix} \begin{bmatrix} 1.4959&-0.90464&-0.84914 \\ \end{bmatrix} \begin{bmatrix} 0.90666&-1.0115&-1.0242 \\ \end{bmatrix} \begin{bmatrix} 1.2148&-0.72060&-0.82451\\ \end{bmatrix} 3. To ensure that the following system of equations, 2x_{1} + 7x_{2} - 11x_{3} = 6 x_{1} + 2x_{2} + x_{3} = -5 7x_{1} + 5x_{2} + 2x_{3} = 17 converges using the Gauss Seidal method, one can rewrite the above equations as follows: \begin{bmatrix} 2&7&-11 \\ 1&2&1 \\ 7&5&2 \\ \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \\ \end{bmatrix} \begin{bmatrix} 7&5&2 \\ 1&2&1 \\ 2&7&-11 \\ \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 17 \\ -5 \\ 6 \\ \end{bmatrix} \begin{bmatrix} 7&5&2 \\ 1&2&1 \\ 2&7&-11 \\ \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 6 \\ -5 \\ 17 \\ \end{bmatrix} The equations cannot be rewritten in a form to ensure convergence. 4. For \begin{bmatrix} 12&7&3 \\ 1&5&1 \\ 2&7&-11 \\ \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \end{bmatrix} = \begin{bmatrix} 22 \\ 7 \\ -2 \\ \end{bmatrix} and using \begin{bmatrix} x_{1}&x_{2}&x_{3} \\ \end{bmatrix} = \begin{bmatrix} 1&2&1 \\ \end{bmatrix} as the initial guess, the value of \begin{bmatrix} x_{1}&x_{2}&x_{3} \\ \end{bmatrix} are found at the end of each iteration as Iteration # x_{1} x_{2} x_{3} 1 0.41666 1.1166 0.96818 2 0.93989 1.0183 1.0007 3 0.98908 1.0020 0.99930 4 0.99898 1.0003 1.0000 At what first iteration number would you trust at least 1 significant digit in your solution? 1 2 3 4 5. The algorithm for the Gauss-Seidal method to solve [A][X] = [C] is given as follows when using nmax iterations. The initial value of [X] is stored in [X]. Sub Seidal(n, a, x, rhs, nmax) For k = 1 To nmax For i = 1 To n For j = 1 to n If (i <> j) Then Sum = Sum + a(i, j) * x(j) endif Next j x(i) = (rhs(i) – Sum) / a(i, i) Next i Next k End Sub Sub Seidal(n, a, x, rhs, nmax) For k = 1 To nmax For i = 1 To n Sum = 0 For j = 1 To n If (i <> j) Then Sum = Sum + a(i, j) * x(j) endif Next j x(i) = (rhs(i) – Sum) / a(i, i) Next i Next k End Sub Sub Seidal(n, a, x, rhs, nmax) For k = 1 To nmax For i = 1 To n Sum = 0 For j = 1 To n Sum = Sum + a(i, j) * x(j) Next j x(i) = (rhs(i) – Sum) / a(i, i) Next i Next k End Sub Sub Seidal(n, a, x, rhs, nmax) For k = 1 To nmax For i = 1 To n Sum = 0 For j = 1 To n If (i <> j) Then Sum = Sum + a(i, j) * x(j) endif Next j x(i) = rhs(i) / a(i, i) Next i Next k End Sub 6. Thermistors measure temperature, have a nonlinear output and are valued for a limited range. So when a thermistor is manufactured, the manufacturer supplies a resistance vs. temperature curve. An accurate representation of the curve is generally given by \dfrac{1}{T} = a_{0} + a_{1} \ln \left( R \right) + a_{2} \left[ \ln \left( R \right) \right]^{2} + a_{3} \left[ \ln \left( R \right) \right]^{3} Where T is temperature in Kelvin, R is resistance in ohms, and a_{0},a_{1},a_{2},a_{3} are constants of the calibration curve. Given the following for a thermistor R (ohms) T \left( ^{\circ} C \right) 1101.0 25.113 911.3 30.131 636.0 40.120 451.1 50.128 the value of the temperature in ^{\circ}C for a measured resistance of 900 ohms most nearly is 30.002 30.472 31.272 31.445 Loading …