Quiz Chapter 02.01: Primer on Differential Calculus MULTIPLE CHOICE TEST (All Tests) BACKGROUND (More on Differentiation) DIFFERENTIATION (More on Differentiation) Pick the most appropriate answer 1. The definition of the first derivative of a function f \left( x \right) is {f}' \left( x \right) =\dfrac{f \left( x+\Delta x \right )+f \left(x \right )]}{\Delta x} {f}' \left( x \right) =\dfrac{f \left( x+\Delta x \right )-f \left(x \right )]}{\Delta x} {f}' \left( x \right) \lim_{x\rightarrow 0}\dfrac{f \left( x+\Delta x \right )+f \left(x \right )]}{\Delta x} {f}' \left( x \right) \lim_{x\rightarrow 0}\dfrac{f \left( x+\Delta x \right ) - f \left(x \right )]}{\Delta x} 2. Given y=5e^{3x}+\sin{\left( x \right)}, then dy/dx is 5e^{3x}+\cos{\left( x \right)} 15e^{3x}+\cos{\left( x \right)} 5e^{3x}-\cos{\left( x \right)} 2.666e^{3x}-\cos{\left( x \right)} 3. Given y=\sin{\left( 2x \right)}, then dy/dx at x=3 most nearly is 0.9600 0.9945 1.920 1.989 4. Given y=x^{3}\ln{\left( x \right)}, then dy/dx is 3x^{2} \ln{\left( x \right)} 3x^{2} \ln{\left( x \right)} + x^{2} x^{2} 3x 5. The velocity of a body as a function of time is given as v \left( t \right) = 5e^{-2t} + 4, where t is in seconds, v is in m/s. The acceleration at t=0.6 in m/s^{2} is -3.012 5.506 4.147 -10 6. If x^{2} + 2xy = y^{2}, then dy/dx is \left( x+y \right) / \left( y-x \right) 2x + 2y \left( x+1 \right) / y -x Loading …