Quiz Chapter 07.01: Primer on Integration MULTIPLE CHOICE TEST (All Tests) BACKGROUND (More on Integration) INTEGRATION (More on Integration) Pick the most appropriate answer 1. Physically, integrating\, \displaystyle\int_{a}^{b} f (x) dx means finding the area under the curve from a to b area to the left of point a area to the right of point b area above the curve from a to b 2. The mean value of a function f(x) from a to b is given by \, \dfrac{f(a)+f(b)}{2} \, \dfrac{f(a)+2f \left( \dfrac{a+b}{2} \right) + f(b)}{4} \, \displaystyle\int_{a}^{b} f(x) dx \dfrac{ \displaystyle\int_{a}^{b} f(x) dx}{\left( b-a \right)} 3. The exact value of\, \displaystyle\int_{0.2}^{22} xe^{x} dx is most nearly 7.8036 11.807 14.034 19.611 4. The exact value of the integral \, \displaystyle\int_{0.2}^{2} f(x)dx for \, \displaystyle\begin{matrix} f(x)=x,&0 \leq x \leq 1.2 \\ f(x)=x^{2},&1.2<x \leq2.4 \\ \end{matrix} 1.9800 2.6640 2.7907 4.7520 5. The area of a circle of radius a can be found by the following integral \, \displaystyle\int_{0}^{a} \left( a^{2} - x^{2} \right) dx \, \displaystyle\int_{0}^{2 \pi} \sqrt{ a^{2} - x^{2} } dx \, 4 \displaystyle\int_{0}^{a} \sqrt{ a^{2} - x^{2} } dx \, \displaystyle\int_{0}^{a} \sqrt{ a^{2} - x^{2} } dx 6. Velocity distribution of a fluid flow through a pipe varies along the radius, and the given v(r). The flow rate through the pipe of radius a is given by \, \pi v (a) \times a^{2} \, \pi \dfrac{v(0) + v(a)}{2} a^{2} \, \displaystyle\int_{0}^{a} v(r)dr \, 2 \pi \displaystyle\int_{0}^{a} \left[ v(r) \times r \right] \, dr Loading …