Quiz Chapter 07.04: Romberg Method MULTIPLE CHOICE TEST (All Tests) SIMPSON 1/3RD RULE (More on Romberg Method) INTEGRATION (More on Integration) Pick the most appropriate answer 1. If InI_{n}In is the value of integral ∫abf(x)dx\, \displaystyle\int_{a}^{b} f(x)dx∫abf(x)dx using nnn-segment Trapezoidal rule, a better of the integral can be found using Richardson’s extrapolation as I2n+I2n−In15I_{2n} + \dfrac{I_{2n} - I_{n}}{15}I2n+15I2n−In I2n+I2n−In3I_{2n} + \dfrac{I_{2n} - I_{n}}{3}I2n+3I2n−In I2nI_{2n}I2n I2n+I2n−InI2nI_{2n} + \dfrac{I_{2n} - I_{n}}{I_{2n}}I2n+I2nI2n−In 2. The estimate of an integral of ∫319f(x)dx\, \displaystyle\int_{3}^{19} f(x)dx∫319f(x)dx is given as 1860.91860.91860.9 using 111-segment Trapezoidal rule. Given f(7)=20.27, f(11)=45.125,f(7)=20.27, \, f(11)=45.125,f(7)=20.27,f(11)=45.125, and f(14)=82.23f(14)=82.23f(14)=82.23, the value of the integral using 222-segment Trapezoidal rule would most nearly be 787.32787.32787.32 1072.01072.01072.0 1144.91144.91144.9 1291.51291.51291.5 3. The value of an integral ∫abf(x)dx\, \displaystyle\int_{a}^{b} f(x)dx∫abf(x)dx given using 1−, 2−,1-, \, 2-,1−,2−, and 444-segment Trapezoidal Rule is given as 5.3460, 2.7708,5.3460, \, 2.7708,5.3460,2.7708, and 1.75361.75361.7536, respectively. The best estimate of the integral you can find using Romberg Integration is most nearly 1.33551.33551.3355 1.38131.38131.3813 1.41451.41451.4145 1.91241.91241.9124 4. Without using the formula for one-segment Trapezoidal Rule for estimating ∫abf(x)dx\, \displaystyle\int_{a}^{b} f(x)dx∫abf(x)dx the true error, EtE_{t}Et, can be found directly as well as exactly by using the formula Et=−(b−a)312f′′(ξ), a≤ξ≤bE_{t} = -\dfrac{ \left( b - a \right)^{3}}{12} {f}''(\xi), \, a \leq \xi \leq bEt=−12(b−a)3f′′(ξ),a≤ξ≤b f(x)=exf(x)=e^{x}f(x)=ex f(x)=x3+3xf(x) = x^{3} + 3xf(x)=x3+3x f(x)=5x2+3f(x) = 5x^{2} + 3f(x)=5x2+3 f(x)=5x2+exf(x) = 5x^{2} + e^{x}f(x)=5x2+ex 5. For ∫abf(x)dx\, \displaystyle\int_{a}^{b} f(x)dx∫abf(x)dx, the true error, EtE_{t}Et, in 111-segment Trapezoidal Rule is given by Et=−(b−a)312f′′(ξ), a≤ξ≤bE_{t} = - \dfrac{ \left( b - a \right)^{3}}{12} {f}'' ( \xi ), \, a \leq \xi \leq bEt=−12(b−a)3f′′(ξ),a≤ξ≤b The value of ξ\xiξ for the integral ∫2.57.23e0.2xdx\, \displaystyle\int_{2.5}^{7.2} 3e^{0.2x}dx∫2.57.23e0.2xdx is most nearly 2.79982.79982.7998 4.85004.85004.8500 4.96014.96014.9601 5.03275.03275.0327 6. Given the velocity vs time data for a body t(s) t(s) t(s) 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 25 25 25 v v v (m/s) 0.166 0.166 0.166 0.55115 0.55115 0.55115 1.8299 1.8299 1.8299 6.0755 6.0755 6.0755 20.172 20.172 20.172 8137.5 8137.5 8137.5 The best estimate for distance covered between 222s and 101010s by using the Romberg Rule based on the Trapezoidal Rule’s results would be 33.45633.45633.456 m 36.87736.87736.877 m 37.25137.25137.251 m 81.35081.35081.350 m Loading …