Comparing Methods of First Derivative Approximation

Forward, Backward and Central Divided Difference

Ana Catalina Torres, Autar Kaw
University of South Florida
United States of America
kaw@eng.usf.edu

Introduction

This worksheet demonstrates the use of Maple to compare the approximation of first order derivatives using three different methods. Each method uses a point h ahead, behind or both of the given value of x at which the first derivative of $f(x)$ is to be found.

Forward Difference Approximation (FDD)

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

Backward Difference Approximation (BDD)

$$
f^{\prime}(x) \approx \frac{f(x)-f(x-h)}{h}
$$

Central Difference Approximation (CDD)

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}
$$

Initialization

> restart;
with (plots) :

Section 1: Input

The following simulation approximates the first derivative of a function using different methods of approximation ($F D D, B D D, C D D$). The user inputs are
a) function, $f(x)$
b) point at which the derivative is to be found, $x v$
c) starting step size, h
d) number of times user wants to halve the step size, n

The outputs include
a) approximate values of the first derivative at the point and initial step size given using different types of approximation
b) exact value
c) absolute relative true error, absolute relative approximate error, and number of at least correct significant digits in the solution as a function of step size.
\lfloor Function $f(x)$.
$>\mathrm{f}:=\mathrm{x} \rightarrow \mathrm{x} \cdot \exp (2 \cdot \mathrm{x})$;

$$
\begin{equation*}
f:=x \rightarrow x \mathrm{e}^{2 x} \tag{3.1}
\end{equation*}
$$

[Value of x at which $f(x)$ is desired, $x v$
$>x V:=4.0$;

$$
\begin{equation*}
x v:=4.0 \tag{3.2}
\end{equation*}
$$

Starting step size, h
$>h:=0.2$;

$$
\begin{equation*}
h:=0.2 \tag{3.3}
\end{equation*}
$$

Number of times step size is halved
$>n:=6$;

$$
\begin{equation*}
n:=6 \tag{3.4}
\end{equation*}
$$

This is the end of the user section. All the information must be entered before proceeding to the next section. Re-execute the program.

Vection 2: Procedure

The following procedure estimates the solution of first order derivate of an equation at a point $x v$ using different methods of approximation.
$f(x)=$ function
$x v=$ value at which the solution is desired
$h=$ step size value
$n=$ number of times step size is halved
$>$ Forward Divided Difference Procedure
$F D D:=\operatorname{proc}(f, x V, h)$
local deriv:
deriv: $=\frac{(f(x V+h)-f(x V))}{h}:$
return (deriv) :
end proc:
$>$ Backward Divided Difference Procedure

```
BDD:=proc(f, xv,h)
local deriv:
deriv}:=\frac{(f(xv)-f(xv-h))}{h}
    return (deriv) :
end proc:
```

[Central Divided Difference Precedure

```
CDD:=proc(f, xv, h)
local deriv:
    deriv}:=\frac{(f(xv+h)-f(xV-h))}{2\cdoth}
    return (deriv):
```

```
end proc:
```


Section 3: Calculation

The exact value Ev of the first derivative of the equation:
First, using the diff command the solution is found. In a second step, the exact value of the derivative is shown.

$$
\begin{array}{ll}
>y(x)=f(x) ; & y(x)=x \mathrm{e}^{2 x} \\
>\operatorname{Soln}:=\operatorname{diff}(f(x), x) ; & \\
& \quad \text { Soln }:=\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x} \\
>E v:=\operatorname{evalf}(\operatorname{subs}(x=x v, & \text { Soln })) ; \\
& E v:=26828.62188 \tag{5.3}
\end{array}
$$

The next loop calculates the following:
Av: Approximate value of the first derivative using various first derivative approximation methods by calling the procedures " $F D D^{\prime \prime}$, " $B D D$ ", and " $C D D$ "
Ev: Exact value of the second derivative
et: Absolute relative true percentage error
ea: Absolute relative approximate percentage error
Sig: Least number of correct significant digits in an approximation

$$
\begin{aligned}
& >\text { for } i \text { from } 0 \text { by } 1 \text { to } n-1 \text { do } \\
& N[i]:=2^{i} \text { : } \\
& H[i]:=\frac{h}{N[i]} \text { : } \\
& \operatorname{AvFDD}[i]:=\operatorname{FDD}(f, x v, H[i]): \\
& \operatorname{AvBDD}[i]:=\operatorname{BDD}(f, x v, H[i]): \\
& \operatorname{AvCDD}[i]:=\operatorname{CDD}(f, x v, H[i]): \\
& e t F D D[i]:=\operatorname{abs}\left(\frac{E v-\operatorname{AvFDD}[i]}{E v}\right) \cdot 100: \\
& \operatorname{etBDD}[i]:=\operatorname{abs}\left(\frac{E_{V}-\operatorname{AvBDD}[i]}{E v}\right) \cdot 100: \\
& \operatorname{etCDD}[i]:=\operatorname{abs}\left(\frac{E v-\operatorname{AvCDD}[i]}{E v}\right) \cdot 100: \\
& \text { if (} i>0 \text {) then } \\
& \operatorname{eaFDD}[i]:=\operatorname{abs}\left(\frac{\operatorname{AvFDD}[i]-\operatorname{AvFDD}[i-1]}{\operatorname{AvFDD}[i]}\right) \cdot 100: \\
& \operatorname{eabDD}[i]:=\operatorname{abs}\left(\frac{\operatorname{AvBDD}[i]-\operatorname{AvBDD}[i-1]}{\operatorname{AvBDD}[i]}\right) \cdot 100: \\
& \operatorname{eaCDD}[i]:=\operatorname{abs}\left(\frac{\operatorname{AvCDD}[i]-\operatorname{AvCDD}[i-1]}{\operatorname{AvCDD}[i]}\right) \cdot 100: \\
& \operatorname{SigFDD}[i]:=\text { floor }\left(2-\log 10\left(\frac{\operatorname{eaFDD}[i]}{0.5}\right)\right):
\end{aligned}
$$

```
    SigBDD[i]:= floor (2-\operatorname{log}10(\frac{eaBDD[i]}{0.5})):
    SigCDD[i]:= floor (2-\operatorname{log}10}(\frac{\operatorname{eaCDD[i]}}{0.5}))
    if SigFDD[i]<0 then
    SigFDD[i]:= 0:
    end if:
    if SigBDD[i]<0 then
        SigBDD[i]:= 0 :
    end if:
    if SigCDD[i]<0 then
        SigCDD[i]:= 0 :
    end if:
end if:
end do:
```

The loop halves the value of the step size n times. Each time, the approximate values of the first derivative are calculated and saved in different vectors depending on the method of approximation. The approximate error is calculated after at least two approximate values of the first derivative have been saved. The number of significant digits is calculated and written as the lowest real number for each method. If the number of significant digits calculated is less than zero, then is shown as zero.

∇ Section 4: Spreadsheet

The next table shows the step size value, exact value, approximate value, and the least number of correct significant digits in an approximation as a function of the step size value for each method of approximation.

```
> with(Spread) :
    tableoutput := CreateSpreadsheet("FDD, BDD and CDD Comparison") :
    SetCellFormula(tableoutput, 1, 2, "Step Size") :
    SetCellFormula(tableoutput, 1, 3, "Exact Value") :
    SetCellFormula(tableoutput, 1, 4, "Approx Value FDD") :
    SetCellFormula(tableoutput, 1, 5, "Abs Rel True Error FDD") :
    SetCellFormula(tableoutput, 1, 6, "Approx Value BDD") :
    SetCellFormula(tableoutput, 1, 7, "Abs Rel True Error BDD") :
    SetCellFormula(tableoutput, 1, 8, "Approx Value CDD") :
    SetCellFormula(tableoutput, 1, 9, "Abs Rel True Error CDD");
for i from 0 by 1 to n-1 do
    SetCellFormula(tableoutput, i+2, 1,i+1):
    SetCellFormula(tableoutput, i+2, 2, evalf(H[i])) :
    SetCellFormula(tableoutput, i + 2, 3, evalf(Ev)) :
    SetCellFormula(tableoutput, i + 2, 4, evalf(AvFDD[i])) :
    SetCellFormula(tableoutput, i + 2, 5, evalf(etFDD[i])) :
    SetCellFormula(tableoutput, i + 2, 6, evalf(AvBDD[i])) :
    SetCellFormula(tableoutput, i + 2, 7, evalf(etBDD[i])) :
```

SetCellFormula(tableoutput, $i+2,8$, evalf(AvCDD[i])) :
SetCellFormula(tableoutput, i+2, 9, evalf(etCDD[i]));
end do:
EvaluateSpreadsheet(tableoutput) :

FDD, BDD and CDD Comparison									
		B	c	D	E	F	G	H	I
1		"Step Size"	"Exact Value"	"Approx Value FDD"	"Abs Rel True Error FDD"	"Approx Value BDD"	"Abs Rel True Error BDD"	"Approx Value CDD"	"Abs Rel True Error CDD"
2	1	0.2	26828.62188	33769.24195	25.87020720	21653.43774	19.28978746	27711.33985	3.290209888
3	2	0.1000000000	26828.62188	30040.64310	11.97236755	24054.84236	10.33888186	27047.74273	0.8167428464
4	3	0.05000000000	26828.62188	28375.27500	5.764936891	25391.33500	5.357289265	26883.30500	0.2038238127
5	4	0.02500000000	26828.62188	27587.71240	2.829405563	26096.86080	2.727538832	26842.28660	0.05093336535
6	5	0.01250000000	26828.62188	27204.68080	1.401707929	26459.39520	1.376241693	26832.03800	0.01273311770
7	6	0.00625000000	26828.62188	27015.78880	0.6976389650	26643.16320	0.6912717352	26829.47600	0.003183614886
8									
9									
10									
11									

- Section 5: Graphs

The following graphs show the approximate solution, absolute relative true error, absolute relative approximate error and least number of significant digits as a function of step size. Each graph displays the resaults of each of the methods of approximation.

```
> data:= [seq([H[i], AvFDD[i]], i=0 ..n-1)]:
    data1 := [seq([H[i], AvBDD[i]], i=0..n-1)]:
    data2 := [seq([H[i], AvCDD[i]], i=0..n-1)]:
    plot([data, data1, data2], x=H[0]..H[n-1], color = [cyan,
    maroon, blue], thickness=2, title
    = "Approximate Solution of the First Derivative of a
    Function using different Methods of Approximation as a
    Function of Step Size", linestyle=[3, 2, 1], legend=[FDD,
    BDD, CDD], legendstyle=[location=right], labels
    = ["Step Size", "Approximate
Value"], titlefont=[TIMES, BOLD, 12], labelfont = [TIMES, ROMAN,
        12]);
data:= [seq([H[i], etFDD[i]], i=0..n-1)]:
data1 := [seq([H[i], etBDD[i]], i=0..n-1)]:
data2 := [seq([H[i], etCDD[i]], i=0..n-1)]:
plot([data, data1, data2], x=H[0]..H[n-1], color = [cyan,
        maroon, blue], thickness=2, title="Absolute Relative True
        Percentage Error
as a Function of Step Size", labels=["Step Size", "Absolute
        Relative
True Error"], linestyle=[3, 2, 1], legend=[FDD, BDD, CDD],
        legendstyle=[location= right], titlefont = [TIMES, BOLD,
        12], labelfont = [TIMES, ROMAN, 12]);
data}:=[\operatorname{seq}([H[i], eaFDD[i]], i=0..n-1)]
```

datal $:=[\operatorname{seq}([H[i], \operatorname{eaBDD}[i]], i=0 \ldots n-1)]:$
data2 $:=[\operatorname{seq}([H[i], \operatorname{eaCDD}[i]], i=0 \ldots n-1)]:$
plot ([data, data1, data2], $x=H[0] \ldots H[n-1]$, color $=[$ cyan, maroon, blue], thickness $=2$, title = "Absolute Relative Approximate Percentage Error
as a Function of Step Size", labels=["Step Size", "Absolute Relative
Approximate Error "], linestyle $=[3,2,1]$, legend $=[\operatorname{FDD}, \mathrm{BDD}$, CDD], legendstyle = [location = right], titlefont = [TIMES, BOLD, 12], labelfont = [TIMES, ROMAN, 12]);
data $:=[\operatorname{seq}([H[i], \operatorname{SigFDD}[i]], i=0 \ldots n-1)]:$
data1 $:=[\operatorname{seq}([H[i], \operatorname{SigBDD}[i]], i=0 \ldots n-1)]:$
data2 $:=[\operatorname{seq}([H[i], \operatorname{SigCDD}[i]], i=0 \ldots n-1)]:$
plot([data, data1, data2], $x=H[0] \ldots H[n-1]$, color $=[$ cyan, maroon, blue], thickness $=2$, title $=$ "Least Correct Significant Digits
as a Function of Step Size", labels=["Step size", "Least number of
significant digits"], linestyle $=[3,2,1]$, legend $=[F D D, B D D$, CDD], legendstyle = [location = right], titlefont = [TIMES, BOLD, 12], labelfont = [TIMES, ROMAN, 12]);

Approximate Solution of the First Derivative of a Function using different Methods of Approximation as a Function of Step Size

Approximate Value

Least Correct Significant Digits

as a Function of Step Size

> Least number of significant digits

> | \cdots | $F D D$ | |
| :---: | :---: | :---: |
| \cdots | \cdots | $B D D$ |
| | $C D D$ | |

References

Numerical Differentiation of Continuous Functions.
See http://numericalmethods.eng.usf.edu/mws/gen/02def/

Questions

1 The velocity of a rocket is given by

$$
v(t)=2000 \cdot \ln \frac{140000}{140000-2100 t}-9.8 t
$$

Use three different methods with a step size of 0.25 to find the acceleration at $t=5 \mathrm{~s}$. Compare with the exact answer and study the effect of the step size.
2 Look at the true error vs. step size data for problem 1. Do you see a relationship between the value of the true error and step size ? Is this concidential? Is it similar for Forward and Backward Divided Difference? Is it different for Central Divided Difference method?

- Conclusions

The worksheet shows the nature of accuracy of the three different methods of finding the first
derivative of a continuous function. Forward and Backward Divided Difference methods exhibit similar accuraciees as they are first order accurate, while central divided difference shows more accuracy as it is second order accurate.

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application for-profit activities.

