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Frequency and Time Domain
The amplitude (vertical axis) of a given periodic function
can be plotted versus time (horizontal axis), but it can 
also be plotted in the frequency domain as shown in 
Figure 2.

Figure 2 Periodic function (see Example 1 in Chapter 11.02 
Continuous Fourier Series) in frequency domain.



Frequency and Time Domain cont.

Figures 2(a) and 2(b) can be described with the 
following equations from chapter 11.02,
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For the periodic function shown in Example 1 of 
Chapter 11.02 (Figure 1), one has:
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Define:
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Also,
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Thus: { }BACk +
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Noting that 1)2cos( =πk for any integer k
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Also,
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From Equation (36, Ch. 11.02), one has
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Hence; upon comparing the previous 2 equations, 
one concludes:
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For ;8...4,3,2,1=k the values for ka kband

(based on the previous 2 formulas) are exactly

identical as the ones presented earlier in Example

1 of Chapter 11.02.
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Thus:
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In general, one has










==







==





+

−

=
numberevenkfori

k

numberoddkfori
kk

Ck

,..8,6,4,2
2
1

,..7,5,3,1
2
11

~ 2π

Frequency and Time Domain cont.



THE END

http://numericalmethods.eng.usf.edu



This instructional power point brought to you by
Numerical Methods for STEM undergraduate
http://numericalmethods.eng.usf.edu
Committed to bringing numerical methods to the 
undergraduate

Acknowledgement

http://numericalmethods.eng.usf.edu/�


For instructional videos on other topics, go to

http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National 
Science Foundation under Grant # 0717624. Any opinions, 
findings, and conclusions or recommendations expressed in 
this material are those of the author(s) and do not necessarily 
reflect the views of the National Science Foundation.

http://numericalmethods.eng.usf.edu/videos/�


The End - Really



Numerical Methods

Fourier Transform Pair 

Part: Complex Number in Polar 
Coordinates

http://numericalmethods.eng.usf.edu



For more details on this topic 

 Go to http://numericalmethods.eng.usf.edu
 Click on keyword
 Click on Fourier Transform Pair 

http://numericalmethods.eng.usf.edu/�


You are free

 to Share – to copy, distribute, display and 
perform the work

 to Remix – to make derivative works



Under the following conditions
 Attribution — You must attribute the work in 

the manner specified by the author or licensor 
(but not in any way that suggests that they 
endorse you or your use of the work). 

 Noncommercial — You may not use this work 
for commercial purposes. 

 Share Alike — If you alter, transform, or build 
upon this work, you may distribute the resulting 
work only under the same or similar license to 
this one. 



Chapter 11.03: Complex number in 
polar coordinates (Contd.)

In Cartesian (Rectangular) Coordinates, a 
complex number       can be expressed as: 

kC~

( )iIRC kkk +=~

In Polar Coordinates, a complex number       can 
be expressed as:

kC~
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Complex number in polar coordinates cont.
Thus, one obtains the following relations between 
the Cartesian and polar coordinate systems:

( )θcosARk = ( )θsinAIk =
This is represented graphically in Figure 3.

Figure 3.  Graphical representation of the complex number 
system in polar coordinates.
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Hence
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Based on the above 3 formulas, the complex numbers
can be expressed as:
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Notes:
(a) The amplitude and angle     are 0.59 and 
2.14 respectively (also see Figures 2a, and 
2b in chapter 11.03).

1

~C

(b) The angle    (in radian) obtained fromθ

A
RCos k=)(θ will be 2.138 radians (=122.48o). 

However based on              
A
ISin k=)(θ

Then     = 1.004 radians (=57.52o). θ
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Chapter 11. 03: Non-Periodic 
Functions (Contd.)

Recall
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Then, Equation (41) can be written as
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Non-Periodic Functions cont.

Figure 4.  Frequency are discretized.

From Figure 4,

ffk =∆
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Non-Periodic Functions cont.

Multiplying and dividing the right-hand-side of the 
equation by      , one obtainsπ2

; inverse Fourier 
transform
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