Fourier Transform Pair

Part: Frequency and Time Domain

http://numericalmethods.eng.usf.edu

For more details on this topic
> Go to http://numericalmethods.eng.usf.edu
> Click on keyword
, Click on Fourier Transform Pair

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Lecture \# 5

Chapter 11.03: Fourier Transform Pair: Frequency and Time Domain

Major: All Engineering Majors

Authors: Duc Nguyen

http://numericalmethods.eng.usf.edu

Numerical Methods for STEM undergraduates

Example 1

$\bar{f}_{1}(t) \approx a_{0}+a_{1} \operatorname{Cos}(t)+b_{1} \operatorname{Sin}(t)$
$\bar{f}_{2}(t) \approx a_{0}+a_{1} \operatorname{Cos}(t)+b_{1} \operatorname{Sin}(t)+a_{2} \operatorname{Cos}(2 t)+b_{2} \operatorname{Sin}(2 t)$
$\bar{f}_{4}(t) \approx a_{0}+a_{1} \operatorname{Cos}(t)+b_{1} \operatorname{Sin}(t)+a_{2} \operatorname{Cos}(2 t)+b_{2} \operatorname{Sin}(2 t)$ $+a_{3} \operatorname{Cos}(3 t)+b_{3} \operatorname{Sin}(3 t)+a_{4} \operatorname{Cos}(4 t)+b_{4} \operatorname{Sin}(4 t)$

Frequency and Time Domain

The amplitude (vertical axis) of a given periodic function can be plotted versus time (horizontal axis), but it can also be plotted in the frequency domain as shown in Figure 2.

Figure 2 Periodic function (see Example 1 in Chapter 11.02 Continuous Fourier Series) in frequency domain.

Frequency and Time Domain cont.

Figures 2(a) and 2(b) can be described with the following equations from chapter 11.02,

$$
f(t)=\sum_{k=-\infty}^{\infty} \widetilde{C}_{k} e^{i k w_{0} t}
$$

(39, repeated)
where

$$
\tilde{C}_{k}=\left(\frac{1}{T}\right)\left\{\int_{0}^{T} f(t) \times e^{-i k w_{0} t} d t\right\}
$$

(41, repeated)

Frequency and Time Domain cont.

For the periodic function shown in Example 1 of Chapter 11.02 (Figure 1), one has:

$$
\begin{aligned}
& w_{0}=2 \pi f=\frac{2 \pi}{T}=\frac{2 \pi}{2 \pi}=1 \\
& \widetilde{C}_{k}=\left(\frac{1}{T}\right)\left\{\int_{0}^{\pi} t \times e^{-i k t} d t+\int_{\pi}^{2 \pi} \pi \times e^{-i k t} d t\right\}
\end{aligned}
$$

Frequency and Time Domain cont.

Define:

$$
A \equiv \int_{0}^{\pi} t \times e^{-i k t} d t=\left[t \times\left(\frac{-1}{i k}\right) e^{-i k t}\right]_{0}^{\pi}+\int_{0}^{\pi}\left(\frac{1}{i k}\right) e^{-i k t} d t
$$

or

$$
\begin{aligned}
A & =\left[\left(\frac{-\pi}{i k}\right) e^{-i k \pi}\right]+\left(\frac{1}{k^{2}}\right)\left[e^{-i k \pi}-1\right] \\
& =\left[\left(\left(\frac{\pi i}{k}\right) e^{-i k \pi}+\left(\frac{1}{k^{2}}\right) e^{-i k \pi}-\frac{1}{k^{2}}\right)\right]
\end{aligned}
$$

Frequency and Time Domain cont.

Also,

$$
\begin{aligned}
& B \equiv \pi \int_{\pi}^{2 \pi} e^{-i k t} d t=\left[\left(e^{-i k t}\right)\left(\frac{-\pi}{i k}\right)\right]_{\pi}^{2 \pi} \\
& B=\left(\frac{-\pi}{i k}\right)\left[e^{-i k 2 \pi}-e^{-i k \pi}\right]=\left(\frac{\pi i}{k}\right)\left[e^{-i k 2 \pi}-e^{-i k \pi}\right]
\end{aligned}
$$

Frequency and Time Domain cont.

Thus:

$$
\tilde{C}_{k}=\left(\frac{1}{2 \pi}\right)\{A+B\}
$$

$$
\tilde{C}_{k}=\left(\frac{1}{2 \pi}\right)\left\{e^{-i k \pi}\left(\frac{\pi i}{k}+\frac{1}{k^{2}}-\frac{\pi i}{k}\right)-\frac{1}{k^{2}}+\left(\frac{\pi i}{k}\right) e^{-i k 2 \pi}\right\}
$$

Using the following Euler identities

$$
\begin{aligned}
e^{-i k \pi} & =\cos (-k \pi)+i \sin (-k \pi) \\
& =\cos (k \pi)-i \sin (k \pi) \\
& =\cos (k \pi) \\
e^{-i k 2 \pi} & =\cos (k 2 \pi)-i \sin (k 2 \pi)=\cos (k 2 \pi)
\end{aligned}
$$

Frequency and Time Domain cont.

Noting that $\cos (k 2 \pi)=1$ for any integer k

$$
\tilde{C}_{k}=\left(\frac{1}{2 \pi}\right)\left\{\operatorname{Cos}(k \pi) \times\left(\frac{1}{k^{2}}\right)-\frac{1}{k^{2}}+\left(\frac{\pi i}{k}\right) \operatorname{Cos}(\hat{k} 2 \pi)\right\}
$$

Frequency and Time Domain cont.

Also,

$$
\cos (k \pi)=\left\{\begin{array}{l}
-1 \text { for } k=\text { odd number }(=1,3,5,7, \ldots) \\
+1 \text { for } k=\text { even number }(=2,4,6,8, \ldots)
\end{array}\right.
$$

Thus,

$$
\begin{aligned}
& \tilde{C}_{k}=\left(\frac{1}{2 \pi}\right)\left\{\left(\frac{(-1)^{k}}{k^{2}}-\frac{1}{k^{2}}+\frac{\pi i}{k}\right\}\right. \\
& \tilde{C}_{k}=\left(\frac{1}{2 \pi k^{2}}\right)\left[(-1)^{k}-1\right]+\left(\frac{1}{2 k}\right) i
\end{aligned}
$$

Frequency and Time Domain cont.

From Equation (36, Ch. 11.02), one has

$$
\tilde{C}_{k}=\frac{a_{k}-i b_{k}}{2}
$$

(36, repeated)

Hence; upon comparing the previous 2 equations, one concludes:

$$
\begin{aligned}
& a_{k} \equiv\left(\frac{1}{\pi k^{2}}\right)\left[(-1)^{k}-1\right] \\
& b_{k}=\left(\frac{-1}{k}\right)
\end{aligned}
$$

Frequency and Time Domain cont.

For $k=1,2,3,4 \ldots 8$; the values for a_{k} and b_{k} (based on the previous 2 formulas) are exactly identical as the ones presented earlier in Example

1 of Chapter 11.02.

Frequency and Time Domain cont.

Thus:

$$
\begin{gathered}
\tilde{C}_{1}=\frac{a_{1}-i b_{1}}{2}=\frac{\frac{-2}{\pi}-i(-1)}{2}=\frac{-1}{\pi}+\frac{1}{2} i \\
\tilde{C}_{2}=\frac{a_{2}-i b_{2}}{2}=\frac{0-i\left(-\frac{1}{2}\right)}{2}=0+\frac{1}{4} i
\end{gathered}
$$

Frequency and Time Domain cont.

$$
\begin{aligned}
& \tilde{C}_{3}=\frac{a_{3}-i b_{3}}{2}=\frac{\left(\frac{-2}{9 \pi}\right)-i\left(\frac{-1}{3}\right)}{2}=\left(\frac{-1}{9 \pi}\right)+\frac{1}{6} i \\
& \tilde{C}_{4}=\frac{a_{4}-i b_{4}}{2}=\frac{0-i\left(\frac{-1}{4}\right)}{2}=0+\frac{1}{8} i \\
& \tilde{C}_{5}=\frac{a_{5}-i b_{5}}{2}=\frac{\left(\frac{-2}{25 \pi}\right)-i\left(\frac{-1}{5}\right)}{2}=\left(\frac{-1}{25 \pi}\right)+\frac{1}{10} i
\end{aligned}
$$

Frequency and Time Domain cont.

$$
\begin{aligned}
& \tilde{C}_{6}=\frac{a_{6}-i b_{6}}{2}=\frac{0-i\left(\frac{-1}{6}\right)}{2}=0+\frac{1}{12} i \\
& \tilde{C}_{7}=\frac{a_{7}-i b_{7}}{2}=\frac{\left(\frac{-2}{49 \pi}\right)-i\left(\frac{-1}{7}\right)}{2}=\left(\frac{-1}{49 \pi}\right)+\frac{1}{14} i \\
& \tilde{C}_{8}=\frac{a_{8}-i b_{8}}{2}=\frac{0-i\left(\frac{-1}{8}\right)}{2}=0+\frac{1}{16} i
\end{aligned}
$$

Frequency and Time Domain cont.

In general, one has

$$
\tilde{C}_{k}=\left\{\begin{array}{r}
\frac{-1}{k^{2} \pi}+\left(\frac{1}{2 k}\right) i \text { for } k=1,3,5,7, . .=\text { odd number } \\
\left(\frac{1}{2 k}\right) i \text { for } k=2,4,6,8, . .=\text { even number }
\end{array}\right.
$$

THE END

http:/ / numericalmethods.eng.usf.edu

OldDminion UNIVERSITY

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http:/ / numericalmethods.eng.usf.edu
Committed to bringing numerical methods to the undergraduate

For instructional videos on other topics, go to
http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Fourier Transform Pair

Part: Complex Number in Polar

 Coordinateshttp://numericalmethods.eng.usf.edu

For more details on this topic
> Go to http://numericalmethods.eng.usf.edu
> Click on keyword
, Click on Fourier Transform Pair

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Lecture \# 6
 Chapter 11.03: Complex number in polar coordinates (Contd.)

In Cartesian (Rectangular) Coordinates, a complex number \widetilde{C}_{k} can be expressed as:

$$
\tilde{C}_{k}=R_{k}+\left(I_{k}\right) i
$$

In Polar Coordinates, a complex number \tilde{C}_{k} can be expressed as:
$\tilde{C}_{k}=A e^{i \theta}=A\{\cos (\theta)+i \sin (\theta)\}=\{A \cos (\theta)\}+\{A \sin (\theta)\} i$

Complex number in polar coordinates cont.

 Thus, one obtains the following relations between the Cartesian and polar coordinate systems:$$
R_{k}=A \cos (\theta) \quad I_{k}=A \sin (\theta)
$$

This is represented graphically in Figure 3.

Figure 3. Graphical representation of the complex number system in polar coordinates.

Complex number in polar coordinates cont.

Hence

$$
\begin{gathered}
R_{k}^{2}+I_{k}^{2}=A^{2} \cos ^{2}(\theta)+A^{2} \sin ^{2}(\theta)=A^{2}\left[\cos ^{2}(\theta)+\sin ^{2}(\theta)\right] \\
\cos (\theta)=\frac{R_{k}}{A} \Rightarrow \theta=\cos ^{-1}\left(\frac{R_{k}}{A}\right) \quad \text { and } \\
\sin (\theta)=\frac{I_{k}}{A} \Rightarrow \theta=\sin ^{-1}\left(\frac{I_{k}}{A}\right)
\end{gathered}
$$

Complex number in polar coordinates cont.

Based on the above 3 formulas, the complex numbers \tilde{C}_{k} can be expressed as:

$$
\widetilde{C}_{1}=\frac{-1}{\pi}+\left(\frac{1}{2}\right) i=(0.59272353) e^{i(2.13770783)}
$$

Complex number in polar coordinates cont.

Notes:
(a) The amplitude and angle \tilde{C}_{1} are 0.59 and 2.14 respectively (also see Figures 2a, and 2 b in chapter 11.03).
(b) The angle θ (in radian) obtained from

$$
\operatorname{Cos}(\theta)=\frac{R_{k}}{A} \text { will be } 2.138 \text { radians }\left(=122.48^{\circ}\right) .
$$

However based on $\operatorname{Sin}(\theta)=\frac{I_{k}}{A}$
Then $\theta=1.004$ radians $\left(=57.52^{\circ}\right)$.

Complex number in polar coordinates cont.

Since the Real and Imaginary components of θ are negative and positive, respectively, the proper selection for θ should be 2.1377 radians.

$$
\begin{aligned}
& \widetilde{C}_{2}=0+\frac{1}{4} i=(0.25) e^{i\left(\frac{\pi}{2}\right)}=(0.25) e^{i(1.5709963)} \\
& \widetilde{C}_{3}=\left(\frac{-1}{9 \pi}\right)+\frac{1}{6} i=(0.17037798) e^{i(1.77990097)}
\end{aligned}
$$

Complex number in polar coordinates cont.

$$
\begin{aligned}
& \widetilde{C}_{4}=0+\frac{1}{8} i=(0.125) e^{i\left(\frac{\pi}{2}\right)}=(0.125) e^{i(1.57079633)} \\
& \widetilde{C}_{5}=\left(\frac{-1}{25 \pi}\right)+\frac{1}{10} i=(0.100807311) e^{i(1.69743886)} \\
& \tilde{C}_{6}=0+\frac{1}{12} i=(0.08333333) e^{i\left(\frac{\pi}{2}\right)}=(0.08333333) e^{i(1.5707633)}
\end{aligned}
$$

Complex number in polar coordinates cont.

$$
\widetilde{C}_{7}=\left(\frac{-1}{49 \pi}\right)+\frac{1}{14} i=(0.07172336) e^{i(1.66149251)}
$$

$$
\tilde{C}_{8}=0+\frac{1}{16} i=(0.0625) e^{i\left(\frac{\pi}{2}\right)}
$$

THE END

http:/ / numericalmethods.eng.usf.edu

OldDminion UNIVERSITY

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http:/ / numericalmethods.eng.usf.edu
Committed to bringing numerical methods to the undergraduate

For instructional videos on other topics, go to
http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

OldDminion UNIVERSITY
 UNIVERSITY OF SOUTH FLORIDA

Numerical Methods

Fourier Transform Pair

Part: Non-Periodic Functions

http://numericalmethods.eng.usf.edu

For more details on this topic
> Go to http://numericalmethods.eng.usf.edu
> Click on keyword
, Click on Fourier Transform Pair

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Lecture \# 7
 Chapter 11. 03: Non-Periodic Functions (Contd.)

Recall

$$
\begin{gathered}
f(t)=\sum_{k=-\infty}^{\infty} \widetilde{C}_{k} e^{i k w_{0} t} \\
\widetilde{C}_{k}=\left(\frac{1}{T}\right)\left\{\int_{0}^{T} f(t) \times e^{-i k w_{0} t} d t\right\}
\end{gathered}
$$

Define

$$
\begin{equation*}
\hat{F}\left(i k w_{0}\right)=\int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-i k w_{0} t} d t \tag{1}
\end{equation*}
$$

Non-Periodic Functions

Then, Equation (41) can be written as

$$
\tilde{C}_{k}=\left(\frac{1}{T}\right) \times \hat{F}\left(i k w_{0}\right)
$$

And Equation (39) becomes

$$
f(t)=\sum_{k=-\infty}^{\infty}\left(\frac{1}{T}\right) \times \hat{F}\left(i k w_{0}\right) e^{i k w_{0} t}
$$

From above equation
or

$$
f_{n p}(t)=\lim _{\substack{T \rightarrow \infty \\ o r \Delta f \rightarrow 0}} f(t)=\lim _{\Delta f \rightarrow 0} \sum_{k=-\infty}^{\infty}(\Delta f) \times \hat{F}\left(i k w_{0}\right) e^{i k w_{0} t}
$$

$$
f_{n p}(t)=\lim _{\Delta f \rightarrow 0} \sum_{k=-\infty}^{\infty}(\Delta f) \times \hat{F}(i k 2 \pi \Delta f) e^{i k 2 \pi \Delta t t}
$$

Non-Periodic Functions cont.

From Figure 4,

$$
\begin{aligned}
k \Delta f & =f \\
f_{n p}(t) & =\int d f \times \hat{F}(i 2 \pi f) e^{i 2 \pi t} \\
f_{n p}(t) & =\int \hat{F}(i 2 \pi f) e^{i 2 \pi t} d f
\end{aligned}
$$

Figure 4. Frequency are discretized.

Non-Periodic Functions cont.

Multiplying and dividing the right-hand-side of the equation by 2π, one obtains

$$
f_{n p}(t)=\left(\frac{1}{2 \pi}\right) \int_{-\infty}^{\infty} \hat{F}\left(i w_{0}\right) e^{i w_{0} t} d\left(w_{0}\right) ; \frac{\text { inverse Fourier }}{\underline{\text { transform }}}
$$

Also, using the definition stated in Equation (1), one gets

$$
\hat{F}\left(i w_{0}\right)=\int_{-\infty}^{\infty} f_{n p}(t) e^{-i w_{0} t} d(t) ; \text { Fourier transform }
$$

THE END

http:/ / numericalmethods.eng.usf.edu

OldDminion UNIVERSITY

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http:/ / numericalmethods.eng.usf.edu
Committed to bringing numerical methods to the undergraduate

For instructional videos on other topics, go to
http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

