Introduction to Fourier Series

Part: I ntroduction to Fourier

 Serieshttp://numericalmethods.eng.usf.edu

For more details on this topic
> Go to http://numericalmethods.eng.usf.edu
> Click on Keyword
> Click on Introduction to Fourier Series

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Lecture \# 1
 Chapter 11.01: Introduction to Fourier Series

Major: All Engineering Majors

Authors: Duc Nguyen
http://numericalmethods.eng.usf.edu
Numerical Methods for STEM undergraduates

Background

The following relationships can be readily established

$$
\begin{align*}
& \int_{0}^{T} \sin \left(k w_{0} t\right) d t=\int_{0}^{T} \cos \left(k w_{0} t\right) d t=0 \tag{1}\\
& \int_{0}^{T} \sin ^{2}\left(k w_{0} t\right) d t=\int_{0}^{T} \cos ^{2}\left(k w_{0} t\right) d t=\frac{T}{2} \tag{2}
\end{align*}
$$

Background cont.

$$
\begin{align*}
& \int_{0}^{T} \cos \left(k w_{0} t\right) \sin \left(g w_{0} t\right) d t=0 \tag{3}\\
& \int_{0}^{T} \sin \left(k w_{0} t\right) \sin \left(g w_{0} t\right) d t=0 \tag{4}\\
& \int_{0}^{T} \cos \left(k w_{0} t\right) \cos \left(g w_{0} t\right) d t=0 \tag{5}
\end{align*}
$$

Background cont.

$$
\begin{align*}
& w_{0}=2 \pi f \tag{6}\\
& f=\frac{1}{T} \tag{7}
\end{align*}
$$

Where f and T represents the frequency in (cycles/time) and period (in seconds) respectively.
A periodic function with a period T should satisfy the following equation:

$$
\begin{equation*}
f(t+T)=f(t) \tag{8}
\end{equation*}
$$

Background cont.

Example 1

Let

$$
\begin{align*}
A & =\int_{0}^{T} \sin \left(k w_{0} t\right) d t \tag{9}\\
& =-\left(\frac{1}{k w_{0}}\right)\left[\cos \left(k w_{0} t\right)\right]_{0}^{T}
\end{align*}
$$

Background cont.

$$
\begin{aligned}
A & =\left(\frac{-1}{k w_{0}}\right)\left[\cos \left(k w_{0} T\right)-\cos (0)\right] \\
& =\left(\frac{-1}{k w_{0}}\right)[\cos (k 2 \pi)-1] \\
& =0
\end{aligned}
$$

Background cont.

Example 2

$$
\begin{equation*}
\text { Let } B=\int_{0}^{T} \sin ^{2}\left(k w_{0} t\right) d t \tag{11}
\end{equation*}
$$

Recall

$$
\begin{gather*}
\sin ^{2}(\alpha)=\frac{1-\cos (2 \alpha)}{2} \tag{12}\\
B=\int_{0}^{T}\left[\frac{1}{2}-\frac{1}{2} \cos \left(2 k w_{0} t\right)\right] d t \tag{13}
\end{gather*}
$$

Background cont.

$$
\begin{align*}
& =\left[\left(\frac{1}{2}\right) t-\left(\frac{1}{2}\right)\left(\frac{1}{2 k w_{0}}\right) \sin \left(2 k w_{0} t\right)\right]_{0}^{T} \\
B & =\left[\frac{T}{2}-\frac{1}{4 k w_{0}} \sin \left(2 k w_{0} T\right)\right]-[0] \tag{14}
\end{align*}
$$

Background cont.

$$
\begin{aligned}
=\frac{T}{2} & -\left(\frac{1}{4 k w_{0}}\right) \sin (2 k * 2 \pi) \\
& =\frac{T}{2}
\end{aligned}
$$

Example 3
Let

$$
\begin{equation*}
C=\int_{0}^{T} \sin \left(g w_{0} t\right) \cos \left(k w_{0} t\right) d t \tag{15}
\end{equation*}
$$

Background cont.

Recall that
$\sin (\alpha+\beta)=\sin (\alpha) \cos (\beta)+\sin (\beta) \cos (\alpha)$
(16)
$C=\int_{0}^{T}\left[\sin \left[(g+k) w_{0} t\right]-\sin \left(k w_{0} t\right) \cos \left(g w_{0} t\right)\right] d t \quad(17)$

Background cont.

$$
=\int_{0}^{T} \sin \left[(g+k) w_{0} t\right] d t-\int_{0}^{T} \sin \left(k w_{0} t\right) \cos \left(g w_{0} t\right) d t(18)
$$

$$
\begin{equation*}
C=0-\int_{0}^{T} \sin \left(k w_{0} t\right) \cos \left(g w_{0} t\right) d t \tag{19}
\end{equation*}
$$

Adding Equations (15), (19),

$$
\begin{align*}
2 C & =\int_{0}^{T} \sin \left(g w_{0} t\right) \cos \left(k w_{0} t\right) d t-\int_{0}^{T} \sin \left(k w_{0} t\right) \cos \left(g w_{0} t\right) d t \\
& =\int_{0}^{T} \sin \left[\left(g w_{0} t\right)-\left(k w_{0} t\right)\right] d t=\int_{0}^{T} \sin \left[(g-k) w_{0} t\right] d t \tag{20}
\end{align*}
$$

Background cont.

$$
2 C=0,
$$

since the right side of the above equation is zero Thus,

$$
\begin{equation*}
C=\int_{o}^{T} \sin \left(g w_{0} t\right) \cos \left(k w_{0} t\right) d t=0 \tag{21}
\end{equation*}
$$

THE END

http:/ / numericalmethods.eng.usf.edu

OldDminion UNIVERSITY

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http:/ / numericalmethods.eng.usf.edu
Committed to bringing numerical methods to the undergraduate

For instructional videos on other topics, go to
http://numericalmethods.eng.usf.edu/videos/

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

