OldDminion UNIVERSITY

Numerical Methods

Golden Section Search Method -

 Theory
http://nm.mathforcollege.com

For more details on this topic
> Go to http://nm.mathforcollege.com
> Click on Keyword
> Click on Golden Section Search Method

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Equal Interval Search Method

- Choose an interval [a, b] over which the optima occurs
- Compute $f\left(\frac{a+b}{2}+\frac{\varepsilon}{2}\right)$ and $f\left(\frac{a+b}{2}-\frac{\varepsilon}{2}\right)$
- If $f\left(\frac{a+b}{2}+\frac{\varepsilon}{2}\right)>f\left(\frac{a+b}{2}-\frac{\varepsilon}{2}\right)$
then the interval in which the maximum occurs is $\left[\frac{a+b}{2}-\frac{\varepsilon}{2}, b\right]$ otherwise it occurs in

$$
\left[a, \frac{a+b}{2}+\frac{\varepsilon}{2}\right]
$$

Figure 1 Equal interval search method.

Golden Section Search Method

- The Equal Interval method is inefficient when ε is small. Also, we need to compute 2 interior points !
- The Golden Section Search method divides the search more efficiently closing in on the optima in fewer iterations.

Figure 2. Golden Section Search method

Golden Section Search MethodSelecting the Intermediate Points

Determining the first intermediate point

$$
X_{1}=X_{l}+a=X_{u}-b
$$

$\frac{a}{\left(a+b=X_{u}-X_{l}\right)}=\frac{b}{a}=0.618($ why?); hence
Determining the second intermediate point
$a=0.618 *\left(X_{u}-X_{l}\right)$, and $\quad b=0.382 *\left(X_{u}-X_{l}\right)$
$\frac{a}{b}=\frac{a+b}{a}=1+\frac{b}{a}$
Let $R=\frac{b}{a}$, hence

$$
\frac{1}{R}=1+R \Rightarrow R^{2}+R-1=0 \Rightarrow R=\frac{(\sqrt{5}-1)}{2} \Rightarrow R=0.61803
$$

Golden Ratio $=>\frac{b}{a}=0.618 \ldots$

Golden Section Search Method

$$
\begin{aligned}
& f(\theta)=4 \sin \theta(1+\cos \theta) \\
& f(\theta)=4 \sin \theta+2 \sin (2 \theta) \\
& f^{\prime}(\theta)=4 \cos \theta+4 \cos (2 \theta)=0 \\
& \Rightarrow 4 \cos \theta+4\left[2 \cos ^{2} \theta-1\right]=0 \\
& \text { Hence, } \theta_{\text {opt }}=\frac{\pi}{3} \text { after } \\
& \text { solving quadratic } \\
& \text { equation, with initial } \\
& \text { guess }=(0,1.5708 \text { rad })
\end{aligned}
$$

$1^{\text {st }}=$ I nitial Iteration
Second Iteration
${ }^{\prime}$ Only 1 new inserted location need to be completed!

Golden Section Search-

 Determining the new search region

- Casel:

If $f\left(x_{2}\right)>f\left(x_{1}\right)$ then the new interval is $\left[x_{L}, x_{2}, x_{1}\right]$

- Case2:

If $f\left(x_{2}\right)<f\left(x_{1}\right)$ then the new interval is $\left[x_{2}, x_{1}, x_{u}\right]$

Golden Section SearchDetermining the new search region

- At each new interval ,one needs to determine only 1(not 2) new inserted location (either compute the new X_{1}, or new X_{2})
- Max. $f(\theta)=4 \sin \theta(1+\cos \theta) \Leftrightarrow \operatorname{Min} . \bar{f}(\theta)=-4 \sin \theta(1+\cos \theta)$
- It is desirable to have automated procedure to compute x_{L} and x_{u} initially.

Golden Section Search-

 (1-D) Line Search Method

Figure 2.5 Golden section partition.

1.618δ

$$
\begin{aligned}
& \alpha_{a}=\alpha_{L}+0.382\left(\alpha_{U}-\alpha_{1}\right) \stackrel{j-2}{=\sum_{V=0}} \delta(1.618)^{\mathrm{V}}+0.382 \delta(1.618)^{\mathrm{j}-1} \xrightarrow[(1+1.618)]{\longleftrightarrow} \\
& \alpha_{a}=\sum_{\mathrm{V}=0}^{\mathrm{j}-2} \delta(1.618)^{\mathrm{v}}+1 \delta(1.618)^{\mathrm{j}-1} \underset{\mathrm{~V}=0}{\mathrm{j}-1} \sum_{0} \delta(1.618)^{\mathrm{v}}=\text { already known!}
\end{aligned}
$$

Golden Section Search-(1-D) Line Search Method

- If $g\left(\alpha_{a}\right)=g\left(\alpha_{b}\right)$, Then the minimum will be between $\alpha_{a} \& \alpha_{b}$.
- If $\left.g\left(\alpha_{a}\right)\right\rangle g\left(\alpha_{b}\right)$ as shown in Figure 2.5, Then the minimum will be between $\alpha_{a} \& \alpha_{U} \Rightarrow \bar{\alpha}_{L}=\alpha_{a}$ and $\bar{\alpha}_{U}=\alpha_{U}$.

Notice that: $\bar{\alpha}_{U}-\bar{\alpha}_{L}=\alpha_{U}-\alpha_{a}=\delta(1.618)^{j}$
And

$$
\begin{aligned}
& \alpha_{b}-\bar{\alpha}_{L}=\alpha_{b}-\alpha_{a}=(1-2 \times 0.382)\left(\alpha_{U}-\alpha_{L}\right)=(0.236)\left(\delta[1.618]^{j-1}+\delta[1.618]^{j}\right) \\
& =(0.236)\left(\delta[1.618]^{j-1} \times[1+1.618]\right)=0.618\left(\delta[1.618]^{j-1}\right) \times \frac{1.618}{1.618} \\
& \alpha_{b}-\bar{\alpha}_{L}=(0.382) \times\left(\delta[1.618]^{j}=0.382\left(\bar{\alpha}_{U}-\bar{\alpha}_{L}\right)\right.
\end{aligned}
$$

Thus $\alpha_{b}\left(\right.$ wrt $\left.\bar{\alpha}_{U} \& \bar{\alpha}_{L}\right)$ plays same role as $\alpha_{a}\left(\right.$ wrt $\left.\alpha_{U} \& \alpha_{L}\right)!!$

Golden Section Search-(1-D) Line Search Method

Step 1 : For a chosen small step size δ in a , say $\delta=+10^{-2} \rightarrow 10^{-1}$, let j be the smallest integer such that $\left.g\left(\sum_{v=0}^{j} \delta(1.618)^{v}\right)\right\rangle g\left(\sum_{v=0}^{j-1} \delta(1.618)^{v}\right)$

The upper and lower bound on ai are $\alpha_{U}=\sum_{V=0}^{J} \delta(1.618)^{V}$ and $\alpha_{L}=\sum_{V=0}^{i-2} \delta(1.618)^{V}$.
Step 2: Compute $g\left(\alpha_{b}\right)$, where $\alpha_{a}=\alpha_{\mathrm{L}}+0.382\left(\alpha_{U}-\alpha_{\mathrm{L}}\right)$, and $\alpha_{\mathrm{b}}=\alpha_{\mathrm{L}}+0.618\left(\alpha_{U^{-}} \alpha_{\mathrm{L}}\right)$.
Note that $\alpha_{a}=\sum_{V=0}^{i-1} \delta(1.618)^{V}$, so $\mathrm{g}\left(\alpha_{\mathrm{a}}\right)$ is already known.
Step 3: Compare $g\left(\alpha_{\mathrm{a}}\right)$ and $\mathrm{g}\left(\alpha_{\mathrm{b}}\right)$ and go to Step 4,5, or 6.
Step 4: If $g\left(\alpha_{a}\right)<g\left(\alpha_{b}\right)$, then $\alpha_{L} \leq \alpha^{i} \leq \alpha_{b}$. By the choice of α_{a} and α_{b}, the new points $\bar{\alpha}_{L}=\alpha_{L}$ and $\bar{\alpha}_{u}=\alpha_{b}$ have $\bar{\alpha}_{b}=\alpha_{a}$.

Compute $g\left(\bar{\alpha}_{a}\right)$, where $\bar{\alpha}_{a}=\bar{\alpha}_{L}+0.382\left(\bar{\alpha}_{u}-\bar{\alpha}_{L}\right)$ and go to Step 7.

Golden Section Search-(1-D) Line Search Method

Step 5: If $g\left(\alpha_{a}\right)>g\left(\alpha_{b}\right)$, then $\alpha_{a} \leq \alpha^{i} \leq \alpha_{U}$. Similar to the procedure in Step 4, put $\bar{\alpha}_{L}=\alpha_{a}$ and $\bar{\alpha}_{u}=\alpha_{u}$.

Computeg $\left(\bar{\alpha}_{b}\right)$, where $\bar{\alpha}_{b}=\bar{\alpha}_{L}+0.618\left(\bar{\alpha}_{u}-\bar{\alpha}_{L}\right)$ and go to Step 7.

Step 6: If $g\left(\alpha_{\mathrm{a}}\right)=\mathrm{g}\left(\alpha_{\mathrm{b}}\right)$ put $\alpha_{\mathrm{L}}=\alpha_{\mathrm{a}}$ and $\alpha_{\mathrm{u}}=\alpha_{\mathrm{b}}$ and return to Step 2.
Step 7: If $\bar{\alpha}_{u}-\bar{\alpha}_{L}$ is suitably small, put $\alpha^{i}=\frac{1}{2}\left(\bar{\alpha}_{u}+\bar{\alpha}_{L}\right)$ and stop. Otherwise, delete the bar symbols on $\bar{\alpha}_{L}, \bar{\alpha}_{a}, \bar{\alpha}_{b}$,and $\bar{\alpha}_{u}$ and return to Step 3.

THE END

http:// nm.mathforcollege.com

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http:/ / nm.mathforcollege.com
Committed to bringing numerical methods to the undergraduate SOUTH FLORIDA

For instructional videos on other topics, go to
http://nm.mathforcollege.com

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

OldDminion UNIVERSITY

Numerical Methods

Golden Section Search Method -

 Example
http://nm.mathforcollege.com

For more details on this topic
> Go to http://nm.mathforcollege.com
> Click on Keyword
> Click on Golden Section Search Method

You are free

- to Share - to copy, distribute, display and perform the work
- to Remix - to make derivative works

Under the following conditions

- Attribution - You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial - You may not use this work for commercial purposes.
- Share Alike - If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one.

Example

The cross-sectional area A of a gutter with equal base and edge length of 2 is given by (trapezoidal area):

$$
\operatorname{Max.} f(\theta)=A=4 \sin \theta(1+\cos \theta)=4 \sin \theta+2 \sin (2 \theta)
$$

Find the angle θ which maximizes the cross-sectional area of the gutter. Using an initial interval of ${ }_{\left[0, \frac{\pi}{2}\right]}$ find the solution after 2 iterations. Convergence achieved if "interval length " is within $\mathcal{E}=0.05$

Solution

The function to be maximized is $f(\theta)=4 \sin \theta(1+\cos \theta)$

Iteration 1: Given the values for the boundaries of $x_{L}=0$ and $x_{u}=\pi / 2$ we can calculate the initial intermediate points as follows:

$$
\begin{aligned}
& x_{1}=x_{L}+\frac{\sqrt{5}-1}{2}\left(x_{u}-x_{L}\right)=0+\frac{\sqrt{5}-1}{2}(1.5708)=0.97080 f(0.97080)=5.1654 \\
& x_{x_{2}}=x_{u}-\frac{\sqrt{5}-1}{2}\left(x_{u}-x_{L}\right)=1.5708-\frac{\sqrt{5}-1}{2}(1.5708)=0.60000 f(0.60000)=4.1227
\end{aligned}
$$

Solution Cont

$$
x_{1}=x_{L}+\frac{\sqrt{5}-1}{2}\left(x_{u}-x_{L}\right)=0.60000+\frac{\sqrt{5}-1}{2}(1.5708-0.60000)=1.2000
$$

To check the stopping criteria the difference between x_{u} and x_{L} is calculated to be

$$
x_{u}-x_{L}=1.5708-0.60000=0.97080
$$

Solution Cont

Iteration 2

$$
\begin{array}{ll}
x_{L}=0.60000 & \\
x_{u}=1.5708 & \\
x_{1}=1.2000 & f(1.2000)=5.0791 \\
x_{2}=0.97080 & f(0.97080)=5.1654
\end{array}
$$

$$
\begin{aligned}
& x_{L}=0.60000 \\
& x_{u}=1.2000 \\
& x_{1}=0.97080 \\
& x_{2}=x_{u}-\frac{\sqrt{5}-1}{2}\left(x_{u}-x_{L}\right)=1.2000-\frac{\sqrt{5}-1}{2}(1.2000-0.6000)=0.82918 \\
& \quad \frac{x_{u}+x_{L}}{2}=1.2000+0.6000=0.9000
\end{aligned}
$$

Theoretical Solution and Convergence

$$
\begin{array}{rccccccc}
\text { Iteration } & \mathrm{x}_{1} & \mathrm{x}_{\mathrm{u}} & \mathrm{x}_{1} & \mathrm{x}_{2} & \mathrm{f}\left(\mathrm{x}_{1}\right) & \mathrm{f}\left(\mathrm{x}_{2}\right) & \varepsilon \\
1 & \underline{0.0000} & \underline{1.5714} & \underline{0.9712} & \underline{0.6002} & \underline{\underline{5.1657}} & \underline{4.1238} & 1.5714 \\
2 & \underline{0.6002} & 1.5714 & \underline{1.2005} & 0.9712 & \underline{5.0784} & \underline{5.1657} & 0.9712 \\
3 & 0.6002 & \underline{1.2005} & 0.9712 & 0.8295 & 5.1657 & 4.9426 & 0.6002 \\
4 & 0.8295 & 1.2005 & 1.0588 & 0.9712 & 5.1955 & 5.1657 & 0.3710 \\
5 & 0.9712 & 1.2005 & 1.1129 & 1.0588 & 5.1740 & 5.1955 & 0.2293 \\
6 & 0.9712 & 1.1129 & 1.0588 & 1.0253 & 5.1955 & 5.1937 & 0.1417 \\
7 & 1.0253 & 1.1129 & 1.0794 & 1.0588 & 5.1908 & 5.1955 & 0.0876 \\
8 & 1.0253 & 1.0794 & 1.0588 & 1.0460 & 5.1955 & 5.1961 & 0.0541 \\
9 & 1.0253 & 1.0588 & 1.0460 & 1.0381 & 5.1961 & 5.1957 & \mathbf{0 . 0 3 3 4} \\
\frac{}{} \begin{array}{lllll}
X_{u}+X_{L} \\
2
\end{array}=\frac{1.0253+1.0588}{2}=1.0420 & f(1.0420)=5.1960
\end{array}
$$

The theoretically optimal solution to the problem happens at exactly 60 degrees which is 1.0472 radians and gives a maximum cross-sectional area of 5.1962.

THE END

http:// nm.mathforcollege.com

OldDminion UNIVERSITY

Acknowledgement

This instructional power point brought to you by Numerical Methods for STEM undergraduate http://nm.mathforcollege.com
Committed to bringing numerical methods to the undergraduate

UNIVERSITY OF SOUTH FLORIDA

For instructional videos on other topics, go to

http://nm.mathforcollege.com

This material is based upon work supported by the National Science Foundation under Grant \# 0717624. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

