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What is Integration?
Integration

∫=
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a
dx)x(fI

The process of measuring 
the area under a curve.

Where: 

f(x) is the integrand

a= lower limit of integration

b= upper limit of integration
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Two-Point Gaussian 
Quadrature Rule
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Basis of the Gaussian  
Quadrature Rule

Previously, the Trapezoidal Rule was developed by the method
of undetermined coefficients.  The result of that development is
summarized below. 
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Basis of the Gaussian  
Quadrature Rule

The two-point Gauss Quadrature Rule is an extension of the 
Trapezoidal Rule approximation where the arguments of the 
function are not predetermined as a and b  but as unknowns
x1 and x2.  In the two-point Gauss Quadrature Rule, the 
integral is approximated as
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Basis of the Gaussian  
Quadrature Rule

The four unknowns x1, x2, c1 and c2 are found by assuming that 
the formula gives exact results for integrating a general third 
order polynomial, .xaxaxaa)x(f 3
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Basis of the Gaussian 
Quadrature Rule

It follows that 
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Equating Equations the two previous two expressions yield
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Basis of the Gaussian  
Quadrature Rule

Since the constants a0, a1, a2, a3 are arbitrary  
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Basis of Gauss Quadrature

The previous four simultaneous nonlinear Equations have 
only one acceptable solution,
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Basis of Gauss Quadrature

Hence Two-Point Gaussian Quadrature Rule
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Higher Point Gaussian 
Quadrature Formulas
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Higher Point Gaussian 
Quadrature Formulas

)()()()( 332211 xfcxfcxfcdxxf
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is called the three-point Gauss Quadrature Rule. 

The coefficients c1, c2, and c3, and the functional arguments x1, x2, and x3

are calculated by assuming the formula gives exact expressions for
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Arguments and Weighing Factors  
for n-point Gauss Quadrature 

Formulas

In handbooks, coefficients and

Gauss Quadrature Rule are

∫ ∑
− =

≅
1

1 1

n

i
ii )x(gcdx)x(g

as shown in Table 1.

Points Weighting
Factors

Function
Arguments

2 c1 = 1.000000000
c2 = 1.000000000

x1 = -0.577350269
x2 =  0.577350269

3 c1 = 0.555555556
c2 = 0.888888889
c3 = 0.555555556

x1 = -0.774596669
x2 =  0.000000000
x3 =  0.774596669

4 c1 = 0.347854845
c2 = 0.652145155
c3 = 0.652145155
c4 = 0.347854845

x1 = -0.861136312
x2 = -0.339981044
x3 = 0.339981044
x4 = 0.861136312

arguments given for n-point

given for integrals

Table 1: Weighting factors c and function
arguments x used in Gauss Quadrature 
Formulas.
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Arguments and Weighing Factors  
for n-point Gauss Quadrature 

Formulas

Points Weighting
Factors

Function
Arguments

5 c1 = 0.236926885
c2 = 0.478628670
c3 = 0.568888889
c4 = 0.478628670
c5 = 0.236926885

x1 = -0.906179846
x2 = -0.538469310
x3 =  0.000000000
x4 =  0.538469310
x5 =  0.906179846

6 c1 = 0.171324492
c2 = 0.360761573
c3 = 0.467913935
c4 = 0.467913935
c5 = 0.360761573
c6 = 0.171324492

x1 = -0.932469514
x2 = -0.661209386
x3 = -0.2386191860
x4 =  0.2386191860
x5 =  0.661209386
x6 =  0.932469514

Table 1 (cont.) : Weighting factors c and function arguments x used in 
Gauss Quadrature Formulas.
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Arguments and Weighing Factors  
for n-point Gauss Quadrature 

Formulas
So if the table is given for ∫

−

1

1
dx)x(g integrals, how does one solve 

∫
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a
dx)x(f ? The answer lies in that any integral with limits of [ ]b,a
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Arguments and Weighing Factors  
for n-point Gauss Quadrature 

Formulas

2
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Example 1

For an integral derive the one-point Gaussian Quadrature

Rule.

,dx)x(f
b
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Solution

The one-point Gaussian Quadrature Rule is
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Solution
The two unknowns x1, and c1 are found by assuming that the 
formula gives exact results for integrating a general first order 
polynomial, 
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Solution

It follows that 

( )1101)( xaacdxxf
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Equating Equations, the two previous two expressions yield
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Basis of the Gaussian  
Quadrature Rule

Since the constants a0, and a1 are arbitrary  
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Solution

Hence One-Point Gaussian Quadrature Rule
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Example 2

Use two-point Gauss Quadrature Rule to approximate the distance

covered by a rocket from t=8 to t=30 as given by 

∫ 
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Find the true error,          for part (a).

Also, find the absolute relative true error,        for part (a).a∈

a)

b)

c)

tE
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Solution

First, change the limits of integration from [8,30] to [-1,1]

by previous relations as follows
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Solution (cont)

Next, get weighting factors and function argument values from Table 1

for the two point rule,

00000000011 .c =

57735026901 .x −=

00000000012 .c =

57735026902 .x =
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Solution (cont.)
Now we can use the Gauss Quadrature formula 
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Solution (cont)

since
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Solution (cont)

The absolute relative true error, t∈ , is (Exact value = 11061.34m) 
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The true error,         ,  isb) tE
ValueeApproximatValueTrueEt −=

44.1105834.11061 −=

m9000.2=



Additional Resources
For all resources on this topic such as digital audiovisual 
lectures, primers, textbook chapters, multiple-choice 
tests, worksheets in MATLAB, MATHEMATICA, MathCad 
and MAPLE, blogs, related physical problems, please 
visit

http://numericalmethods.eng.usf.edu/topics/gauss_qua
drature.html

http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html�
http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html�


THE END
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