04.11.16

 Chapter 04.11
Cholesky and LDLT Decomposition 04.11.15

Chapter 04.11
Cholesky and LDLT Decomposition
After reading this chapter, you should be able to:
1. understand why the LDLT algorithm is more general than the Cholesky algorithm,

2. understand the differences between the factorization phase and forward solution phase in the Cholesky and LDLT algorithms,

3. find the factorized [L] and [D] matrices,

4. obtain the forward solution phase,

5. obtain the diagonal scaling phase,

6. obtain the backward solution phase,

7. solve a set of simultaneous linear equations using LDLT algorithm.
Introduction

Solving large (and sparse) system of simultaneous linear equations (SLE) has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. In matrix notation, at set of SLE can be represented as:

[image: image1.wmf]]

[

]

][

[

b

x

A

=

 (1)

where

[image: image2.wmf]]

[

A

= known coefficient matrix, with dimension
[image: image3.wmf]n

n

´

[image: image4.wmf]]

[

b

= known right-hand-side (RHS)
[image: image5.wmf]1

´

n

vector

[image: image6.wmf]]

[

x

= unknown
[image: image7.wmf]1

´

n

 vector.

Symmetrical Positive Definite (SPD) SLE

For many practical SLE, the coefficient matrix
[image: image8.wmf]]

[

A

 (see Equation (1)) is Symmetric Positive Definite (SPD). In this case, the efficient a 3-step Cholesky algorithm [1-2] can be used. A symmetric matrix
[image: image9.wmf]n

n

A

´

]

[

is SPD if either of the following conditions is satisfied:
(a) If each and every determinant of sub-matrix
[image: image10.wmf])

,...,

2

,

1

(

n

i

A

ii

=

is positive, or..
(b) If
[image: image11.wmf]0

>

Ay

y

T

 for any given vector
[image: image12.wmf]0

]

[

1

r

¹

´

n

y

Example 1
Find if

[image: image13.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

1

1

0

1

2

1

0

1

2

]

[

A

is SPD?
Solution

Criterion a: If each and every determinant of sub-matrix
[image: image14.wmf])

,...,

2

,

1

(

n

i

A

ii

=

is positive.
The given
[image: image15.wmf]3

3

´

 matrix
[image: image16.wmf]]

[

A

is symmetrical, because
[image: image17.wmf]ji

ij

a

a

=

. Furthermore, one has

[image: image18.wmf][

]

0

2

2

det

1

1

>

=

=

´

A

[image: image19.wmf][

]

0

3

2

1

1

2

det

2

2

>

=

-

-

=

´

A

[image: image20.wmf][

]

0

1

1

1

0

1

2

1

0

1

2

det

3

3

>

=

-

-

-

-

=

´

A

Hence
[image: image21.wmf]]

[

A

is SPD.
Criterion (b): If
[image: image22.wmf]0

>

Ay

y

T

 for any given vector
[image: image23.wmf]0

]

[

1

r

¹

´

n

y

For any given vector

[image: image24.wmf]0

3

2

1

r

r

¹

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

y

y

y

y

,
one computes

[image: image25.wmf][

]

(

)

{

}

(

)

{

}

3

2

2

3

2

2

2

1

2

2

1

3

2

2

3

2

2

2

1

2

1

3

2

1

3

2

1

2

2

2

2

2

1

1

0

1

2

1

0

1

2

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

Ay

y

T

-

+

+

+

-

=

-

+

+

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

[image: image26.wmf](

)

(

)

0

2

3

2

2

1

2

2

1

>

-

+

+

-

=

y

y

y

y

y

Since the above scalar is always positive, hence matrix
[image: image27.wmf]]

[

A

is SPD.

Step 1: Matrix Factorization phase

In this step, the coefficient matrix
[image: image28.wmf]]

[

A

that is SPD can be decomposed (or factorized) into

[image: image29.wmf]]

[

]

[

]

[

U

U

A

T

=

 (2)

where,

[image: image30.wmf]]

[

U

 is a
[image: image31.wmf]n

n

´

 upper triangular matrix.

The following simple
[image: image32.wmf]3

3

´

 matrix example will illustrate how to find the matrix
[image: image33.wmf]]

[

U

.

Various terms of the factorized matrix
[image: image34.wmf]]

[

U

can be computed/derived as follows (see Equation (2)):

[image: image35.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

33

23

22

13

12

11

33

23

13

22

12

11

33

32

31

23

22

21

13

12

11

0

0

0

0

0

0

u

u

u

u

u

u

u

u

u

u

u

u

a

a

a

a

a

a

a

a

a

 (3)

Multiplying two matrices on the right-hand-side (RHS) of Equation (3), and then equating each upper-triangular RHS terms to the corresponding ones on the upper-triangular left-hand-side (LHS), one gets the following 6 equations for the 6 unknowns in the factorized matrix
[image: image36.wmf]]

[

U

.

[image: image37.wmf]11

11

a

u

=

;
[image: image38.wmf]11

12

12

u

a

u

=

;
[image: image39.wmf]11

13

13

u

a

u

=

 (4)

[image: image40.wmf](

)

2

1

2

12

22

22

u

a

u

-

=

;
[image: image41.wmf]22

13

12

23

23

u

u

u

a

u

-

=

;
[image: image42.wmf](

)

2

1

2

23

2

13

33

33

u

u

a

u

-

-

=

 (5)

In general, for a
[image: image43.wmf]n

n

´

 matrix, the diagonal and off-diagonal terms of the factorized matrix
[image: image44.wmf]]

[

U

can be computed from the following formulas:

[image: image45.wmf](

)

2

1

1

1

2

÷

ø

ö

ç

è

æ

-

=

å

-

=

i

k

ki

ii

ii

u

a

u

 (6)

[image: image46.wmf]ii

i

k

kj

ki

ij

ij

u

u

u

a

u

å

-

=

-

=

1

1

 (7)

It is noted that if
[image: image47.wmf]j

i

=

, then the numerator of Equation (7) becomes identical to the terms under the square root in Equation (6). In other words, to factorize a general term
[image: image48.wmf]ij

u

, one simply needs to do the following steps:

Step 1.1: Compute the numerator of Equation (7), such as

[image: image49.wmf]å

-

=

-

=

1

1

i

k

kj

ki

ij

u

u

a

Sum

Step 1.2 If
[image: image50.wmf]ij

u

is an off-diagonal term (say,
[image: image51.wmf]j

i

<

) then from Equation (7)

[image: image52.wmf]ii

ij

u

Sum

u

=

else, if
[image: image53.wmf]ij

u

is a diagonal term (that is,
[image: image54.wmf]j

i

=

), then from Equation (6)

[image: image55.wmf]Sum

u

ii

=

As a quick example, one computes:

[image: image56.wmf]55

47

45

37

35

27

25

17

15

57

57

u

u

u

u

u

u

u

u

u

a

u

-

-

-

-

=

 (8)

Thus, for computing
[image: image57.wmf])

7

,

5

(

=

=

j

i

u

, one only needs to use the (already factorized) data in columns
[image: image58.wmf])

5

(

#

=

i

, and
[image: image59.wmf])

7

(

#

=

j

of
[image: image60.wmf]]

[

U

, respectively.

In general, to find the (off-diagonal) factorized term
[image: image61.wmf]ij

u

, one only needs to utilize the “already factorized” columns
[image: image62.wmf]i

#

, and
[image: image63.wmf]j

#

 information (see Figure 1). For example, if
[image: image64.wmf]5

=

i

, and
[image: image65.wmf]7

=

j

, then Figure 1 will lead to the same formula as shown earlier in Equation (7), or in Equation (8). Similarly, to find the (diagonal) factorized term
[image: image66.wmf]ii

u

, one simply needs to utilize columns
[image: image67.wmf]i

#

, and
[image: image68.wmf]i

#

 (again!) information (see Figure 1). In this case, Figure 1 will lead to the same formula as shown earlier in Equation (6).

[image: image69.emf]k = 1

k = 2

k = 3

k = 4

ii

u

ij

u

j

u

4

j

u

3

j

u

2

j

u

1

i

u

4

i

u

3

i

u

2

ii

u

i = 5

Col. # i=5

Col. # j=7

Figure 1 Cholesky Factorization for the term
[image: image70.wmf]ij

u

Since the square root operation involved during the Cholesky factorization phase (see Equation (6)), one must make sure the term under the square root is non-negative. This requirement satisfied by
[image: image71.wmf]]

[

A

being SPD.

Step 2: Forward Solution phase

Substituting Equation (2) into Equation (1), one gets

[image: image72.wmf]]

[

]

][

[

]

[

b

x

U

U

T

=

 (9)

Let us define

[image: image73.wmf]]

[

]

[

]

[

y

x

U

º

 (10)

Then, Equation (9) becomes

[image: image74.wmf]]

[

]

[

]

[

b

y

U

T

=

 (11)
Since
[image: image75.wmf]T

U

]

[

is a lower triangular matrix, Equation (11) can be efficiently solved for the intermediate unknown vector
[image: image76.wmf]]

[

y

, according to the order

[image: image77.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

n

y

y

y

.

.

2

1

hence the name “forward solution”.

As a quick example, one has from Equation (11)

[image: image78.wmf]ï

þ

ï

ý

ü

ï

î

ï

í

ì

=

ï

þ

ï

ý

ü

ï

î

ï

í

ì

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

33

23

13

22

12

11

0

0

0

b

b

b

y

y

y

u

u

u

u

u

u

 (12)

From the 1st row of Equation (12), one gets

[image: image79.wmf]1

1

11

b

y

u

=

[image: image80.wmf]11

1

1

u

b

y

=

 (13)

From the 2nd row of Equation (12), one gets

[image: image81.wmf]2

2

22

1

12

b

y

u

y

u

=

+

[image: image82.wmf]22

1

12

2

2

u

y

u

b

y

-

=

 (14)

Similarly

[image: image83.wmf]33

2

23

1

13

3

3

u

y

u

y

u

b

y

-

-

=

 (15)

In general, from the
[image: image84.wmf]th

j

 row of Equation (12), one has

[image: image85.wmf]jj

j

i

i

ij

j

j

u

y

u

b

y

å

-

=

-

=

1

1

 (16)

Step 3: Backward Solution phase

Since
[image: image86.wmf]]

[

U

is an upper triangular matrix, Equation (10) can be efficiently solved for the original unknown vector
[image: image87.wmf]]

[

x

, according to the order

[image: image88.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

-

-

1

2

1

.

x

x

x

x

n

n

n

and hence the name “backward solution”.

As a quick example, one has from Equation (10)

[image: image89.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

33

23

22

13

12

11

0

0

0

y

y

y

x

x

x

u

u

u

u

u

u

 (17)

From the last (or
[image: image90.wmf]rd

th

n

3

=

) row of Equation (17), one has

[image: image91.wmf]3

3

33

y

x

u

=

.
hence

[image: image92.wmf]33

3

3

u

y

x

=

 (18)

Similarly

[image: image93.wmf]22

3

23

2

2

u

x

u

y

x

-

=

 (19)

and

[image: image94.wmf]11

3

13

2

12

1

1

u

x

u

x

u

y

x

-

-

=

 (20)

In general, one has

[image: image95.wmf]jj

n

j

i

i

ji

j

j

u

x

u

y

x

å

+

=

-

=

1

 (21)
Amongst the above 3-step Cholesky algorithms, factorization phase in step 1 consumes about 95% of the total SLE solution time.
If the coefficient matrix
[image: image96.wmf]]

[

A

is symmetrical but not necessarily positive definite, then the above Cholesky algorithms will not be valid. In this case, the following
[image: image97.wmf]T

LDL

factorized algorithms can be employed

[image: image98.wmf]T

L

D

L

A

]

][

][

[

]

[

=

 (22)
For example

[image: image99.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

1

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

1

32

31

21

33

22

11

32

31

21

33

32

31

23

22

21

13

12

11

l

l

l

d

d

d

l

l

l

a

a

a

a

a

a

a

a

a

 (23)

Multiplying the three matrices on the RHS of Equation (23), then equating the resulting upper-triangular RHS terms of Equation (23) to the corresponding ones on the LHS, one obtains the following formulas for the diagonal
[image: image100.wmf]]

[

D

, and lower-triangular
[image: image101.wmf]]

[

L

matrices

[image: image102.wmf]å

-

=

-

=

1

1

2

j

k

kk

jk

jj

jj

d

l

a

d

 (24)

[image: image103.wmf]÷

÷

ø

ö

ç

ç

è

æ

´

÷

÷

ø

ö

ç

ç

è

æ

-

=

å

-

=

jj

j

k

jk

kk

ik

ij

ij

d

l

d

l

a

l

1

1

1

 (25)

Thus, the
[image: image104.wmf]T

LDL

algorithms can be summarized by the following step-by-step procedures.
Step1: Factorization phase

[image: image105.wmf]T

L

D

L

A

]

][

][

[

]

[

=

 (22, repeated)

Step 2: Forward solution and diagonal scaling phase

Substituting Equation (22) into Equation (1), one gets

[image: image106.wmf]]

[

]

[

]

][

][

[

b

x

L

D

L

T

=

 (26)

Let us define

[image: image107.wmf]]

[

]

[

]

[

y

x

L

T

=

[image: image108.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

32

31

21

1

0

0

1

0

1

y

y

y

x

x

x

l

l

l

 (27)

[image: image109.wmf]1

,

2

,...,

1

,

;

1

-

=

-

=

å

+

=

n

n

i

for

x

l

y

x

n

i

k

k

ki

i

i

 (28)

Also, define

[image: image110.wmf]]

[

]

][

[

z

y

D

=

[image: image111.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

33

22

11

0

0

0

0

0

0

z

z

z

y

y

y

d

d

d

 (29)

[image: image112.wmf]n

i

for

d

z

y

ii

i

i

......,

,

3

,

2

,

1

,

=

=

 (30)

Then Equation (26) becomes

[image: image113.wmf]]

[

]

][

[

b

z

L

=

[image: image114.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

32

31

21

1

0

1

0

0

1

b

b

b

z

z

z

l

l

l

 (31)

[image: image115.wmf]n

i

for

z

L

b

z

i

k

k

ik

i

i

......,

,

3

,

2

,

1

1

1

=

-

=

å

-

=

 (32)

Equation (31) can be efficiently solved for the vector
[image: image116.wmf][

]

z

, and then Equation (29) can be conveniently (and trivially) solved for the vector
[image: image117.wmf][

]

y

.
Step 3: Backward solution phase

In this step, Equation (27) can be efficiently solved for the original unknown vector
[image: image118.wmf][

]

x

.

Example 2

Using the Cholesky algorithm, solve the following SLE system for the unknown vector
[image: image119.wmf][

]

x

.

[image: image120.wmf]]

[

]

][

[

b

x

A

=

where

[image: image121.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

1

1

0

1

2

1

0

1

2

A

[image: image122.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

0

0

1

]

[

b

Solution

The factorized, upper triangular matrix
[image: image123.wmf][

]

U

can be computed by either referring to Equations (6-7), or looking at Figure 1, as following:
Row 1 of [U] is given below.

[image: image124.wmf]414

.

1

2

11

11

=

=

=

a

u

[image: image125.wmf]7071

.

0

414

.

1

1

11

12

12

-

=

-

=

=

u

a

u

[image: image126.wmf]0

414

.

1

0

11

13

13

=

=

=

u

a

u

Row 2 of [U] is given below

[image: image127.wmf](

)

(

)

{

}

(

)

225

.

1

7071

.

0

2

2

2

2

1

2

12

2

1

1

1

1

2

22

22

=

-

-

=

-

=

þ

ý

ü

î

í

ì

-

=

å

=

-

=

u

u

a

u

i

k

ki

[image: image128.wmf](

)

(

)

8165

.

0

225

.

1

0

7071

.

0

1

225

.

1

1

13

12

22

1

1

1

23

23

-

=

-

-

-

=

´

-

-

=

-

=

å

=

-

=

u

u

U

u

u

a

u

i

k

kj

ki

Row 3 of [U] is given below

[image: image129.wmf](

)

{

}

(

)

(

)

5774

.

0

8165

.

0

0

1

2

2

2

1

2

23

2

13

33

2

1

2

1

1

2

33

33

=

-

-

-

=

-

-

=

þ

ý

ü

î

í

ì

-

=

å

=

-

=

u

u

a

u

a

u

i

k

ki

Thus, the factorized matrix

[image: image130.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

5774

.

0

0

0

8165

.

0

225

.

1

0

0

7071

.

0

414

.

1

U

The forward solution phase, shown in Equation (11), becomes

[image: image131.wmf][

]

[

]

[

]

b

y

U

T

=

[image: image132.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

0

0

1

5774

.

0

8165

.

0

0

0

225

.

1

7071

.

0

0

0

414

.

1

3

2

1

y

y

y

Thus, Equation (16) can be used to solve for [y] as

[image: image133.wmf]7071

.

0

414

.

1

1

11

1

1

=

=

=

u

b

y

[image: image134.wmf](

)

(

)

(

)

4082

.

0

225

.

1

7071

.

0

7071

.

0

0

22

1

12

1

1

1

2

2

=

=

=

-

=

-

=

-

=

å

=

-

=

u

y

u

u

y

u

b

y

jj

j

i

i

ij

[image: image135.wmf](

)

(

)

(

)

(

)

(

)

5774

.

0

5774

.

0

4082

.

0

8165

.

0

7071

.

0

0

0

33

2

23

1

13

2

1

1

3

3

=

=

=

-

=

-

=

=

-

=

-

=

å

=

-

=

u

y

u

y

u

u

y

u

b

y

jj

j

i

i

ij

The backward solution phase, shown in Equation (10), becomes:

[image: image136.wmf][

]

[

]

[

]

y

x

U

=

[image: image137.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

5774

.

0

4082

.

0

7071

.

0

5774

.

0

0

0

8165

.

0

225

.

1

0

0

7071

.

0

414

.

1

3

2

1

x

x

x

Thus, Equation (21) can be used to solve

[image: image138.wmf]1

5774

.

0

5774

.

0

33

3

3

=

=

=

=

u

y

u

y

x

jj

j

[image: image139.wmf](

)

(

)

1

225

.

1

1

8165

.

0

4082

.

0

22

3

23

2

3

3

1

2

=

-

-

=

-

=

-

=

å

=

=

+

=

u

x

u

y

u

x

u

y

x

jj

N

j

i

i

ji

j

[image: image140.wmf](

)

(

)

(

)

(

)

1

414

.

1

1

0

1

7071

.

0

7071

.

0

11

3

13

2

12

1

3

2

1

1

=

-

-

-

=

-

-

=

-

=

å

=

=

+

=

u

x

u

x

u

y

u

x

u

y

x

jj

N

j

i

i

ji

j

Hence

[image: image141.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

1

1

]

[

x

Example 3

Using the LDLT algorithm, solve the following SLE system for the unknown vector
[image: image142.wmf][

]

x

.

[image: image143.wmf]]

[

]

][

[

b

x

A

=

where

[image: image144.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

-

-

=

1

1

0

1

2

1

0

1

2

A

[image: image145.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

0

0

1

]

[

b

Solution

The factorized matrices
[image: image146.wmf]]

[

D

and
[image: image147.wmf]]

[

L

can be computed from Equation (24) and Equation (25), respectively.

[image: image148.wmf][

]

[

]

L

and

D

of

matrices

of

Column

d

a

l

d

a

d

l

d

l

a

l

always

l

a

d

l

a

d

jj

j

k

jk

kk

ik

j

k

kk

jk

1

0

2

0

5

.

0

2

1

)

!

(

1

2

11

31

31

11

21

0

1

1

21

21

11

11

0

1

1

2

11

11

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

þ

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ý

ü

=

=

=

-

=

-

=

=

-

=

=

=

=

-

=

å

å

=

-

=

=

-

=

[image: image149.wmf](

)

(

)

(

)

(

)

(

)

[

]

[

]

L

and

D

matrices

of

Column

d

l

d

l

a

l

always

l

d

l

d

l

a

d

j

k

j

k

kk

jk

2

6667

.

0

5

.

1

5

.

0

2

0

1

)

!

(

1

5

.

1

2

5

.

0

2

2

22

1

1

1

21

11

31

32

32

22

2

11

2

21

1

1

1

2

22

22

ï

ï

ï

ï

ï

ï

ï

ï

þ

ï

ï

ï

ï

ï

ï

ï

ï

ý

ü

-

=

-

-

-

=

-

=

=

=

-

-

=

-

=

-

=

å

å

=

-

=

=

-

=

[image: image150.wmf](

)

(

)

(

)

(

)

[

]

[

]

L

and

D

matrices

of

Column

d

l

d

l

d

l

a

d

j

k

kk

jk

3

3333

.

0

5

.

1

6667

.

0

2

0

1

1

2

2

22

2

32

11

2

31

2

1

1

2

33

33

ï

ï

ï

þ

ï

ï

ï

ý

ü

=

-

-

-

=

-

-

=

-

=

å

=

-

=

Hence

[image: image151.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

3333

.

0

0

0

0

5

.

1

0

0

0

2

D

and

[image: image152.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

1

6667

.

0

0

0

1

5

.

0

0

0

1

L

The forward solution shown in Equation (31) becomes:

[image: image153.wmf][

]

[

]

[

]

b

z

L

=

[image: image154.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

0

0

1

1

667

.

0

0

0

1

5

.

0

0

0

1

3

2

1

z

z

z

, or

[image: image155.wmf]å

-

=

-

=

1

1

i

k

k

ik

i

i

z

l

b

z

 (32, repeated)
Hence

[image: image156.wmf](

)

(

)

(

)

(

)

(

)

(

)

3333

.

0

5

.

0

6667

.

0

1

0

0

5

.

0

1

5

.

0

0

1

2

32

1

31

3

3

1

21

2

2

1

1

=

-

-

-

=

-

-

=

=

-

-

=

-

=

=

=

z

L

z

L

b

z

z

L

b

z

b

z

The diagonal scaling phase, shown in Equation (29) becomes

[image: image157.wmf][

]

[

]

[

]

z

y

D

=

[image: image158.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3333

.

0

5

.

0

1

3333

.

0

0

0

0

5

.

1

0

0

0

2

3

2

1

y

y

y

, or

[image: image159.wmf]ii

i

i

d

z

y

=

Hence

[image: image160.wmf]5

.

0

2

1

11

1

1

=

=

=

d

z

y

[image: image161.wmf]3333

.

0

5

.

1

5

.

0

22

2

2

=

=

=

d

z

y

[image: image162.wmf]1

3333

.

0

3333

.

0

33

3

3

=

=

=

d

z

y

The backward solution phase can be found by referring to Equation (27)

[image: image163.wmf][

]

[

]

[

]

y

x

L

T

=

[image: image164.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

1

333

.

0

5

.

0

1

0

0

667

.

0

1

0

0

5

.

0

1

3

2

1

x

x

x

[image: image165.wmf]å

+

=

-

=

N

i

k

k

ki

i

i

x

l

y

x

1

 (28, repeated)
Hence

[image: image166.wmf](

)

(

)

(

)

(

)

(

)

1

1

0

1

5

.

0

5

.

0

1

1

6667

.

0

3333

.

0

1

1

3

31

2

21

1

1

2

3

32

2

2

3

3

=

-

-

-

=

-

-

=

=

´

-

-

=

-

=

=

=

x

x

l

x

l

y

x

x

x

l

y

x

y

x

Hence

[image: image167.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

1

1

1

3

2

1

x

x

x

x

Through this numerical example, one clearly sees that the “square root operations” have NOT been involved during the entire LDLT algorithms. Thus, the coefficient matrix [A], shown in Equation (1) is NOT required to be SPD.

Re-ordering Algorithms For Minimizing Fill-in Terms [1,2].

During the factorization phase (of Cholesky, or
[image: image168.wmf]T

LDL

algorithms), many “zero” terms in the original/given matrix
[image: image169.wmf]]

[

A

 will become “non-zero” terms in the factored matrix
[image: image170.wmf]]

[

U

. These new non-zero terms are often called as “fill-in” terms (indicated by the symbol
[image: image171.wmf]F

). It is, therefore, highly desirable to minimize these fill-in terms, so that both computational time/effort and computer memory requirements can be substantially reduced. For example, the following matrix
[image: image172.wmf]]

[

A

 and vector
[image: image173.wmf]]

[

b

are given:

[image: image174.wmf][

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

11

0

0

1

0

2

0

44

0

0

3

0

0

0

66

0

4

0

1

0

0

88

5

0

0

3

4

5

110

7

2

0

0

0

7

112

A

 (33)

[image: image175.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

14

47

70

94

129

121

]

[

b

 (34)

The Cholesky factorization matrix
[image: image176.wmf]]

[

U

, based on the original matrix
[image: image177.wmf]]

[

A

 (see Equation 33) and Equations (6-7), or Figure 1, can be symbolically computed as

[image: image178.wmf][

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

´

´

´

´

´

´

´

´

´

´

´

´

=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

F

F

F

F

F

F

U

 (35)

In Equation (35), the symbols
[image: image179.wmf]x

, and
[image: image180.wmf]F

 represents the “non-zero” and “fill-in” terms, respectively.

In practical applications, however, it is always a necessary step to rearrange the original matrix
[image: image181.wmf]]

[

A

 through re-ordering algorithms (or subroutines) [Refs 1-2] and produce the following integer mapping array
IPERM (new equation #) = {old equation #}

 (36)

such as, for this particular example:

[image: image182.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

1

2

3

4

5

6

6

5

4

3

2

1

IPERM

 (37)

Using the above results (see Equation 37), one will be able to construct the following re-arranged matrices:

[image: image183.wmf][

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

112

7

0

0

0

2

7

110

5

4

3

0

0

5

88

0

0

1

0

4

0

66

0

0

0

3

0

0

44

0

2

0

1

0

0

11

*

A

 (38)
and

[image: image184.wmf]ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

121

129

94

70

47

14

]

[

*

b

 (39)

In the original matrix
[image: image185.wmf]A

(shown in Equation 33), the nonzero term
[image: image186.wmf]A

 (old row 1, old column 2) = 7 will move to new location of the new matrix
[image: image187.wmf]*

A

 (new row 6, new column 5) = 7, etc.
The non zero term
[image: image188.wmf]A

 (old row 3, old column 3) = 88 will move to
[image: image189.wmf]*

A

 (new row 4, new column 4) = 88, etc.
The value of
[image: image190.wmf]b

 (old row 4) = 70 will be moved to (or located at)
[image: image191.wmf]*

b

 (new row 3) = 70, etc.

Now, one would like to solve the following modified system of linear equations (SLE) for
[image: image192.wmf]]

[

*

x

,

[image: image193.wmf]]

[

]

][

[

*

*

*

b

x

A

=

 (40)

rather than to solve the original SLE (see Equation (1)). The original unknown vector
[image: image194.wmf]}

{

x

can be easily recovered from
[image: image195.wmf]]

[

*

x

 and
[image: image196.wmf][

]

IPERM

, shown in Equation (37).

The factorized matrix
[image: image197.wmf]]

[

*

U

can be “symbolically” computed from
[image: image198.wmf]]

[

*

A

as (by referring to either Figure 1 or Equations 6-7):

[image: image199.wmf][

]

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

´

´

´

´

´

´

´

´

´

´

´

´

=

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

*

F

U

 (41)

You can clearly see the big benefits of solving the SLE shown in Equation (40), instead of solving the original Equation (1), since the factorized matrix
[image: image200.wmf]]

[

*

U

has only 1 fill-in term (see the symbol “
[image: image201.wmf]F

” in Equation 41), as compared to six fill-in-terms occurred in the factorized matrix
[image: image202.wmf]]

[

U

 as shown in Equation 35.
On-Line Chess-Like Game For Reordering/Factorized Phase [4].

Based on the discussions presented in the previous section 2 (about factorization phase), and section 3 (about reordering phase), one can easily see the similar operations between the symbolic, numerical factorization and reordering (to minimize the number of fill-in terms) phases of sparse SLE.

In practical computer implementation for the solution of SLE, the reordering phase is usually conducted first (to produce the mapping between “old↔new” equation numbers, as indicated in the integer array IPERM(-), see Equations 36-37).

Then, the sparse symbolic factorization phase is followed by using either Cholesky Equations 6-7, or the
[image: image203.wmf]T

LDL

Equations 24-25 (without requiring the actual/numerical values to be computed). The reason is because during the symbolic factorization phase, one only wishes to find the number (and the location) of non-zero fill-in terms. This symbolic factorization process is necessary for allocating the “computer memory” requirement for the “numerical factorization” phase which will actually compute the exact numerical values of
[image: image204.wmf]]

[

*

U

, based on the same Cholesky Equations (6-7) (or the
[image: image205.wmf]T

LDL

 Equations (24-25)).

In this work, a chess-like game (shown in Figure 2, Ref. [4]) has been designed with the following objectives:

[image: image206.jpg](OXOXONOXOXGXO) P .

Current Fill in terms

Figure 2 A Chess-Like Game For Learning to Solve SLE.
(A) Teaching undergraduates the process how to use the reordering output IPERM(-), see Equations (36-37) for converting the original/given matrix
[image: image207.wmf]]

[

A

, see Equation (33), into the new/modified matrix
[image: image208.wmf]]

[

*

A

, see Equation (38). This step is reflected in Figure 2, when the “Game Player” decides to swap node (or equation) i (say
[image: image209.wmf]2

=

i

) with another node (or equation) j, and click the CONFIRM icon! Since node i=2 is currently connected to nodes
[image: image210.wmf]j

=4, 6, 7, 8, swapping node
[image: image211.wmf]2

=

i

 with the above nodes j will NOT change the number/pattern of the fill-in terms. However, if node
[image: image212.wmf]2

=

i

 is swapped with node j=1, or 3 or 5, then the fill-in terms pattern may change (for better or worse)!
(B) Helping undergraduates to understand the “symbolic” factorization” phase by symbolically utilizing the Cholesky factorized Equations (6-7). This step is illustrated in Figure 2, for which the “game player” will see (and also hear the computer animated sound, and human voice) the non-zero terms (including fill-in terms) of the original matrix
[image: image213.wmf]]

[

A

 to move to the new locations in the new/modified matrix
[image: image214.wmf]]

[

*

A

.

(C) Helping undergraduates to understand the numerical factorization phase, by numerically utilizing the same Cholesky factorized Equations (6-7).

(D) Teaching undergraduates to understand existing reordering concepts, or to discover new reordering algorithms.
Further Explanation on the Developed Game

1. In the above chess-like game, which is available on-line [4], powerful features of FLASH computer environment [3], such as animated sound, human voice, motions, graphical colors etc… have been incorporated and programmed into the developed game-software for more appeal to game players/learners.
2. In the developed chess-like game, fictitious monetary (or any kind of ‘scoring system”) is rewarded (and broadcasted by computer animated human voice) to game players, based on how he/she swaps the node (or equation) numbers, and consequently based on how many fill-in F terms occurred. In general, less fill-in terms introduced will result in more rewards.
3. Based on the original/given matrix
[image: image215.wmf]]

[

A

, and existing re-ordering algorithms (such as the Reverse Cuthill-Mckee, or RCM algorithms [1-2]) the number of fill-in terms F can be computed using RCM algorithms. This internally generated information will be used to judge how good the players/learners are, and/or broadcast “congratulations message” to a particular player who discovers a new “chess-like move” (or, swapping node) strategies which are even better than RCM algorithms.
4. Initially, the player(s) will select the matrix size (
[image: image216.wmf]8

8

´

, or larger is recommended), and the percentage (50%, or larger is suggested) of zero-terms (or sparsity of the matrix). Then, the START Game icon will be clicked by the player.
5. The player will then CLICK one of the selected node i (or equation) numbers appearing on the computer screen. The player will see those nodes j which are connected to node i (based on the given/generated matrix
[image: image217.wmf]]

[

A

). The player then has to decide to swap node
[image: image218.wmf]i

 with one of the possible node
[image: image219.wmf]j

. After confirming the player’s decision, the outcomes/results will be announced by the computer animated human voice, and the monetary-award will (or will not) be given to the players/learners, accordingly. In this software, a maximum of $1,000,000 can be earned by the player, and the exact dollar amount will be inversely proportional to the number of fill-in terms occurred (based on the player’s decision on how to swap node
[image: image220.wmf]i

 with another node
[image: image221.wmf]j

).
6. The next player will continue to play, with his/her move (meaning to swap the
[image: image222.wmf]th

i

 node with the
[image: image223.wmf]th

j

 node) based on the current best non-zero terms pattern of the matrix.
References

	CHOLSEKY AND LDLT DECOMPOSITION
	

	Topic
	Cholesky and LDLT Decomposition

	Summary
	Textbook chapter of Cholesky and LDLT Decomposition

	Major
	General Engineering

	Authors
	Duc Nguyen

	Date
	July 29, 2010

	Web Site
	http://numericalmethods.eng.usf.edu

04.11.1

_1340608732.unknown

_1340610477.unknown

_1341460468.unknown

_1341461417.unknown

_1341462614.unknown

_1341464087.unknown

_1341464707.unknown

_1341464817.unknown

_1341464880.unknown

_1341464816.unknown

_1341464699.unknown

_1341462632.unknown

_1341462643.unknown

_1341462656.unknown

_1341462640.unknown

_1341462626.unknown

_1341462082.unknown

_1341462390.unknown

_1341462405.unknown

_1341462606.unknown

_1341462360.unknown

_1341462377.unknown

_1341462258.unknown

_1341462056.unknown

_1341462062.unknown

_1341461844.unknown

_1341460928.unknown

_1341461053.unknown

_1341461404.unknown

_1341461029.unknown

_1341461048.unknown

_1341460978.unknown

_1341460751.unknown

_1341460789.unknown

_1341460839.unknown

_1341460747.unknown

_1340610840.unknown

_1340610920.unknown

_1340610974.unknown

_1340611555.unknown

_1340611674.unknown

_1340612234.unknown

_1340612180.unknown

_1340611571.unknown

_1340611095.unknown

_1340611113.unknown

_1340610977.unknown

_1340611092.unknown

_1340610963.unknown

_1340610971.unknown

_1340610922.unknown

_1340610897.unknown

_1340610914.unknown

_1340610917.unknown

_1340610912.unknown

_1340610842.unknown

_1340610894.unknown

_1340610841.unknown

_1340610695.unknown

_1340610701.unknown

_1340610708.unknown

_1340610698.unknown

_1340610655.unknown

_1340610667.unknown

_1340610570.unknown

_1340609988.unknown

_1340610318.unknown

_1340610423.unknown

_1340610439.unknown

_1340610474.unknown

_1340610426.unknown

_1340610353.unknown

_1340610385.unknown

_1340610320.unknown

_1340610306.unknown

_1340610310.unknown

_1340610314.unknown

_1340610065.unknown

_1340610094.unknown

_1340610267.unknown

_1340610060.unknown

_1340609770.unknown

_1340609883.unknown

_1340609920.unknown

_1340609936.unknown

_1340609901.unknown

_1340609809.unknown

_1340609827.unknown

_1340609777.unknown

_1340609653.unknown

_1340609732.unknown

_1340609759.unknown

_1340609719.unknown

_1340609529.unknown

_1340609649.unknown

_1340608761.unknown

_1340549452.unknown

_1340607954.unknown

_1340608489.unknown

_1340608512.unknown

_1340608628.unknown

_1340608642.unknown

_1340608603.unknown

_1340608474.unknown

_1340608349.unknown

_1340608425.unknown

_1340608471.unknown

_1340608372.unknown

_1340608235.unknown

_1340607980.unknown

_1340608031.unknown

_1340550026.unknown

_1340550221.unknown

_1340607808.unknown

_1340607944.unknown

_1340607946.unknown

_1340607903.unknown

_1340550282.unknown

_1340607665.unknown

_1340550254.unknown

_1340550119.unknown

_1340550162.unknown

_1340550177.unknown

_1340550142.unknown

_1340550093.unknown

_1340550116.unknown

_1340550034.unknown

_1340549606.unknown

_1340549702.unknown

_1340549795.unknown

_1340550023.unknown

_1340549721.unknown

_1340549636.unknown

_1340549685.unknown

_1340549629.unknown

_1340549524.unknown

_1340549547.unknown

_1340549550.unknown

_1340549544.unknown

_1340549490.unknown

_1340549514.unknown

_1340549468.unknown

_1340548664.unknown

_1340548956.unknown

_1340549108.unknown

_1340549247.unknown

_1340549387.unknown

_1340549442.unknown

_1340549280.unknown

_1340549183.unknown

_1340549237.unknown

_1340549131.unknown

_1340549047.unknown

_1340549049.unknown

_1340549067.unknown

_1340549048.unknown

_1340549045.unknown

_1340549046.unknown

_1340549043.unknown

_1340549044.unknown

_1340549041.unknown

_1340549042.unknown

_1340548957.unknown

_1340548838.unknown

_1340548864.unknown

_1340548883.unknown

_1340548954.unknown

_1340548955.unknown

_1340548953.unknown

_1340548880.unknown

_1340548850.unknown

_1340548853.unknown

_1340548845.unknown

_1340548759.unknown

_1340548791.unknown

_1340548796.unknown

_1340548778.unknown

_1340548729.unknown

_1340548732.unknown

_1340548676.unknown

_1340548163.unknown

_1340548433.unknown

_1340548538.unknown

_1340548658.unknown

_1340548661.unknown

_1340548659.unknown

_1340548614.unknown

_1340548625.unknown

_1340548528.unknown

_1340548531.unknown

_1340548453.unknown

_1340548260.unknown

_1340548399.unknown

_1340548428.unknown

_1340548396.unknown

_1340548188.unknown

_1340548232.unknown

_1340548170.unknown

_1340547988.unknown

_1340548092.unknown

_1340548157.unknown

_1340548159.unknown

_1340548136.unknown

_1340548019.unknown

_1340548090.unknown

_1340547929.unknown

_1340547975.unknown

_1340547979.unknown

_1340547970.unknown

_1340547935.unknown

_1340547903.unknown

_1340547921.unknown

_1340547871.unknown

_1330798047.vsd
k = 4

i = 5

Col. # i=5

Col. # j=7

k = 1

k = 2

k = 3

