Introduction to Scientific Computing

Major: All Engineering Majors

Authors: Autar Kaw, Luke Snyder

http://numericalmethods.eng.usf.edu

Transforming Numerical Methods Education for STEM Undergraduates

Introduction

My advice

- If you don't let a teacher know at what level you are by asking a question, or revealing your ignorance you will not learn or grow.
- You can't pretend for long, for you will eventually be found out. Admission of ignorance is often the first step in our education.
 - Steven Covey—Seven Habits of Highly Effective People

Why use Numerical Methods?

• To solve problems that cannot be solved exactly

Why use Numerical Methods?

• To solve problems that are intractable!

Steps in Solving an Engineering Problem

http://numericalmethods.eng.usf.edu

How do we solve an engineering problem?

Example of Solving an Engineering Problem

Bascule Bridge THG

Bascule Bridge THG

Trunnion-Hub-Girder Assembly Procedure

PLD STATE: EXPOSO2

- **Step1**. Trunnion immersed in dry-ice/alcohol
- **Step2.** Trunnion warm-up in hub
- **Step3.** Trunnion-Hub immersed in
 - dry-ice/alcohol
- Step4. Trunnion-Hub warm-up into girder

Problem

After Cooling, the Trunnion Got Stuck in Hub

Why did it get stuck?

Magnitude of contraction needed in the trunnion was 0.015" or more. Did it contract enough?

Video of Assembly Process

Trunnion-Hub-Girder Assembly of Bascule Bridges

University of South Florida Tampa

Glen Besterfield (PI) Autar Kaw (Co-PI) Roger Grane (Co-PI) Michael Denninger (Grad Student) Badri Ratnam (Grad Student) Sanjeev Nichani (Grad Student)

Trunnion-Hub-Girder Assembly of Bascule Bridges

University of South Florida Tampa

Glen Besterfield (PI) Autar Kaw (Co-PI) Roger Grane (Co-PI) Michael Denninger (Grad Student) Badri Ratnam (Grad Student) Sanjeev Nichani (Grad Student)

Unplugged Version

VH1 Version

Consultant calculations $\Delta D = D \times \alpha \times \Delta T$ D = 12.363" $\alpha = 6.47 \times 10^{-6} in / in / {}^{o} F$ $\Delta T = -108 - 80 = -188^{\circ} F$

$\Delta D = (12.363)(6.47 \times 10^{-6})(-188)$ = -0.01504"

The Correct Model Would Account for Varying Thermal Expansion Coefficient

Can You Roughly Estimate the Contraction?

Can You Find a Better Estimate for the Contraction?

Estimating Contraction Accurately

So what is the solution to the problem?

One solution is to immerse the trunnion in liquid nitrogen which has a boiling point of -321°F as opposed to the dry-ice/alcohol temperature of -108°F.

$\Delta D = -0.0244''$

Revisiting steps to solve a problem

- 1) Problem Statement: Trunnion got stuck in the hub.
- 2) Modeling: Developed a new model

$$\Delta D = D \int_{T_a}^{T_c} \alpha(T) dT$$

- 3) Solution: 1) Used trapezoidal rule OR b) Used regression and integration.
- 4) Implementation: Cool the trunnion in liquid nitrogen.

THE END

http://numericalmethods.eng.usf.edu

Introduction to Numerical Methods

Mathematical Procedures

http://numericalmethods.eng.usf.edu

Mathematical Procedures

- Nonlinear Equations
- Differentiation
- Simultaneous Linear Equations
- Curve Fitting
 - Interpolation
 - Regression
- Integration
- Ordinary Differential Equations
- Other Advanced Mathematical Procedures:
 - Partial Differential Equations
 - Optimization
 - Fast Fourier Transforms

Nonlinear Equations

How much of the floating ball is under water?

$x^3 - 0.165x^2 + 3.993 \times 10^{-4} = 0$

Nonlinear Equations

How much of the floating ball is under the water?

http://numericalmethods.eng.usf.edu

Differentiation

Differentiation

What is the acceleration at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Simultaneous Linear Equations

Find the velocity profile, given

Time (s)	5	8	12
Vel (m/s)	106	177	600

$$v(t) = at^2 + bt + c, \ 5 \le t \le 12$$

Three simultaneous linear equations 25a + 5b + c = 106 64a + 8b + c = 177144a + 12b + c = 600

Interpolation

What is the velocity of the rocket at t=7 seconds?

Time (s)	5	8	12
Vel (m/s)	106	177	600

Regression

Thermal expansion coefficient data for cast steel

Regression (cont)

Integration

Finding the diametric contraction in a steel shaft when dipped in liquid nitrogen.

Ordinary Differential Equations

How long does it take a trunnion to cool down?

$$mc\frac{d\theta}{dt} = -hA(\theta - \theta_a), \ \theta(0) = \theta_{room}$$

Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/introduction_nu merical.html

THE END