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                                                       Chapter 08.02

08.02.3

Chapter 08.02

Multiple-Choice Test 
Chapter 08.02
Euler’s Method

1. To solve the ordinary differential equation 
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by Euler’s method, you need to rewrite the equation as
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2. Given 
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and using a step size of 
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nearly 
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3. Given 
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and using a step size of 
[image: image14.wmf]3

.

0

=

h

, the best estimate of 
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most nearly

(I) 
[image: image16.wmf]37319

.

0

-


(J) 
[image: image17.wmf]36288

.

0

-


(K) 
[image: image18.wmf]35381

.

0

-


(L) 
[image: image19.wmf]34341

.

0

-


4. The velocity (
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m

) of a body is given as a function of time (seconds) by 
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Using Euler’s method with a step size of 5 seconds, the distance in meters traveled by 
the body from 
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(M) 3133.1 
(N) 3939.7 

(O) 5638.0 

(P) 39397 

5. Euler’s method can be derived by using the first two terms of the Taylor series of writing the value of 
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 if the first three terms of the Taylor series are chosen for the ordinary differential equation 




[image: image32.wmf](

)

7

0

,

3

2

5

=

=

+

-

y

e

y

dx

dy

x


would be
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6. A homicide victim is found at 6:00 PM in an office building that is maintained at 
72 
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o

. When the victim was found, his body temperature was at 85 
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.  Three hours later at 9:00 PM, his body temperature was recorded at 78 
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.  Assume the temperature of the body at the time of death is the normal human body temperature of 98.6 
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The governing equation for the temperature 
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 of the body is
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where, 
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= temperature of the body, 
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 = ambient temperature, 
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 = time, hours
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 = constant based on thermal properties of the body and air.


The estimated time of death most nearly is

(U) 2:11 PM

(V) 3:13 PM

(W) 4:34 PM

(X) 5:12 PM
For a complete solution, refer to the links at the end of the book.







































08.02.1

08.02.2

08.02.2


_1300880588.unknown

_1300888695.unknown

_1300888755.unknown

_1300888921.unknown

_1300889042.unknown

_1300889045.unknown

_1300889038.unknown

_1300888939.unknown

_1300888812.unknown

_1300888898.unknown

_1300888791.unknown

_1300888705.unknown

_1300888721.unknown

_1300888701.unknown

_1300880607.unknown

_1300881392.unknown

_1300881415.unknown

_1300888683.unknown

_1300881404.unknown

_1300881352.unknown

_1300880596.unknown

_1283523590.unknown

_1287668974.unknown

_1287669118.unknown

_1300880514.unknown

_1287669115.unknown

_1287669117.unknown

_1287669114.unknown

_1287669077.unknown

_1283523610.unknown

_1283523655.unknown

_1283523688.unknown

_1283523794.unknown

_1283523805.unknown

_1283523786.unknown

_1283523677.unknown

_1283523614.unknown

_1283523597.unknown

_1283523604.unknown

_1283523594.unknown

_1283523486.unknown

_1283523538.unknown

_1283523584.unknown

_1283523535.unknown

_1283523466.unknown

_1283523483.unknown

_1283523463.unknown

