## Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

## Multiple-Choice Test take this multiple-choice test on linear regression online <br> Linear Regression

## Regression

1. Given $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots \ldots . . . . .\left(x_{n}, y_{n}\right)$, best fitting data to $y=f(x)$ by least squares requires minimization of
(A) $\sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}\right)\right]$
(B) $\sum_{i=1}^{n}\left|y_{i}-f\left(x_{i}\right)\right|$
(C) $\sum_{i=1}^{n}\left[y_{i}-f\left(x_{i}\right)\right]^{2}$
(D) $\sum_{i=1}^{n}\left[y_{i}-\bar{y}\right]^{2}, \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}$
2. The following data

| $x$ | 1 | 20 | 30 | 40 |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 400 | 800 | 1300 |

is regressed with least squares regression to $y=a_{o}+a_{1} x$. The value of $a_{1}$ most nearly is
A) 27.480
B) 28.956
C) 32.625
D) 40.000
3. The following data

| $x$ | 1 | 20 | 30 | 40 |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 400 | 800 | 1300 |

is regressed with least squares regression to $y=a_{1} x$. The value of $a_{1}$ most nearly is
A) 27.480
B) 28.956
C) 32.625
D) 40.000
4. An instructor gives the same $y$ vs $x$ data as given below to four students.

| $x$ | 1 | 10 | 20 | 30 | 40 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ | 1 | 100 | 400 | 600 | 1200 |

They each come up with four different answers for the straight line regression model. Only one is correct. The correct model is
A) $y=60 x-1200$
B) $y=30 x-200$
C) $y=-139.43+29.684 x$
D) $y=1+22.782 x$
5. A torsion spring of a mousetrap is twisted through an angle of $180^{\circ}$. The torque vs angle data is given below.

| $T$ | $\mathrm{~N}-\mathrm{m}$ | 0.110 | 0.189 | 0.230 | 0.250 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\theta$ | rad | 0.10 | 0.50 | 1.1 | 1.5 |

The amount of strain energy stored in the mousetrap spring in Joules is
A) 0.2987
B) 0.4174
C) 0.8420
D) 1562
6. A scientist finds that regressing the $y$ vs $x$ data given below to straight-line $y=a_{0}+a_{1} x$ results in the coefficient of determination for the straight-line model, $r^{2}$ to be zero.

| $x$ | 1 | 3 | 11 | 17 |
| :--- | :--- | :--- | :--- | :--- |
| $y$ | 2 | 6 | 22 | $?$ |

The missing value for $y$ at $x=17$ most nearly is
A) -2.444
B) 2.000
C) 6.889
D) 34.00

