Chapter 08.04
Runge-Kutta 4th Order Method for Ordinary Differential Equations-More Examples
Industrial Engineering

Example 1

The open loop response, that is, the speed of the motor to a voltage input of 20V, assuming a system without damping is

\[20 = (0.02) \frac{dw}{dt} + (0.06)w. \]

If the initial speed is zero \((w(0) = 0)\), and using the Runge-Kutta 4\(^{th}\) order method, what is the speed at \(t = 0.8\) s? Assume a step size of \(h = 0.4\) s.

Solution

\[
\frac{dw}{dt} = 1000 - 3w
\]

\[f(t, w) = 1000 - 3w \]

\[w_{i+1} = w_i \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)h \]

For \(i = 0\), \(t_0 = 0\), \(w_0 = 0\)

\[k_1 = f(t_0, w_0) \]

\[= f(0, 0) \]

\[= 1000 - 3 \times 0 \]

\[= 1000 \]

\[k_2 = f\left(t_0 + \frac{1}{2}h, w_0 + \frac{1}{2}k_1h \right) \]

\[= f\left(0 + \frac{1}{2} \times 0.4, 0 + \frac{1}{2} (1000) \times 0.4 \right) \]

\[= f(0.2, 200) \]

\[= 1000 - 3 \times 200 \]

\[= 400 \]

\[k_3 = f\left(t_0 + \frac{1}{2}h, w_0 + \frac{1}{2}k_2h \right) \]

\[= f\left(0 + \frac{1}{2} \times 0.4, 0 + \frac{1}{2} (200) \times 0.4 \right) \]

\[= f(0.2, 100) \]

\[= 1000 - 3 \times 100 \]

\[= 400 \]

\[k_4 = f\left(t_0 + h, w_0 + k_3h \right) \]

\[= f\left(0 + 0.4, 0 + 400 \right) \]

\[= f(0.4, 400) \]

\[= 1000 - 3 \times 400 \]

\[= -600 \]

\[w_1 = w_0 + \frac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4 \right)h \]

\[= 0 + \frac{1}{6} \left(1000 + 2 \times 400 + 2 \times 400 - 600 \right) \]

\[= 0 + \frac{1}{6} \left(1000 + 800 + 800 - 600 \right) \]

\[= 0 + \frac{1}{6} \times 1200 \]

\[= 200 \]
\[f(t) = 0 + \left(\frac{1}{2} \times 0.4 \right), 0 + \left(\frac{1}{2} \times (400) \times 0.4 \right) \]
\[f(0.2, 80) \]
\[1000 - 3 \times 80 \]
\[760 \]
\[k_4 = f(t_0 + h, w_0 + k_3 h) \]
\[f(0 + (0.4), 0 + ((760) \times 0.4)) \]
\[f(0.4, 304) \]
\[1000 - 3 \times 304 \]
\[88 \]
\[w_i = w_0 + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h \]
\[0 + \frac{1}{6}(1000 + 2 \times (400) + 2 \times (760) + (88)) \times 0.4 \]
\[0 + \frac{1}{6}(3408) \times 0.4 \]
\[227.2 \text{ rad/s} \]

\(w_1 \) is the approximate speed of the motor at
\(t = t_i = t_0 + h = 0 + 0.4 = 0.4 \text{ s} \)
\[w(0.4) \approx w_1 = 227.2 \text{ rad/s} \]

For \(i = 1, \ t_i = 0.4, \ w_i = 227.2 \)
\[k_1 = f(t_i, w_i) \]
\[f(0.4, 227.2) \]
\[1000 - 3 \times 227.2 \]
\[318.4 \]
\[k_2 = f(t_i + \frac{1}{2} h, w_i + \frac{1}{2} k_i h) \]
\[f(0.4 + \left(\frac{1}{2} \times 0.4 \right), 227.2 + \left(\frac{1}{2} \times (318.4) \times 0.4 \right)) \]
\[f(0.6, 290.88) \]
\[1000 - 3 \times 290.88 \]
\[127.36 \]
\[k_3 = f(t_i + \frac{1}{2} h, w_i + \frac{1}{2} k_i h) \]
\[f(0.4 + \left(\frac{1}{2} \times 0.4 \right), 227.2 + \left(\frac{1}{2} \times (127.36) \times 0.4 \right)) \]
\[f(0.6, 252.67) \]
\[1000 - 3 \times 252.67 \]
\[241.98 \]

\[k_4 = f(t_1 + h, w_i + k_3 h) \]
\[= f(0.4 + 0.4, 227.2 + (241.98 \times 0.4)) \]
\[= f(0.8, 323.99) \]
\[= 1000 - 3 \times 323.99 \]
\[= 28.019 \]

\[w_2 = w_i + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)h \]
\[= 227.2 + \frac{1}{6} (318.4 + 2 \times (127.36) + 2 \times (241.98) + 28.019) \times 0.4 \]
\[= 227.2 + \frac{1}{6} (1085.1) \times 0.4 \]
\[= 299.54 \text{ rad/s} \]

\(w_2 \) is the approximate speed of the motor at
\[t = t_2 = t_1 + h = 0.4 + 0.4 = 0.8 \text{ s} \]
\[w(0.8) \approx w_2 = 299.54 \text{ rad/s} \]

The exact solution of the ordinary differential equation is given by
\[w(t) = \left(\frac{1000}{3} \right) - \left(\frac{1000}{3} \right) e^{-3t} \]

The solution to this nonlinear equation at \(t = 0.8 \text{ s} \) is
\[w(0.8) = 303.09 \text{ rad/s} \]

Figure 1 compares the exact solution with the numerical solution using the Runge-Kutta 4th order method using different step sizes.
Figure 1 Comparison of Runge-Kutta 4th order method with exact solution for different step sizes.

Table 1 and Figure 2 show the effect of step size on the value of the calculated speed of the motor at $t = 0.8\text{ s}$.

Table 1 Values of speed of the motor at 0.8 seconds for different step sizes.

| Step size, h | $w(0.8)$ | E_i | $|\varepsilon_i|\ %$ |
|---------------|-----------|-----------|-----------------|
| 0.8 | 147.20 | 155.89 | 51.434 |
| 0.4 | 299.54 | 3.5535 | 1.1724 |
| 0.2 | 302.96 | 0.12988 | 0.042852 |
| 0.1 | 303.09 | 0.0062962 | 0.0020773 |
| 0.05 | 303.09 | 0.00034702| 0.00011449 |
In Figure 2, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order method), Heun’s method (Runge-Kutta 2nd order method) and the Runge-Kutta 4th order method.

In Figure 3, we are comparing the exact results with Euler’s method (Runge-Kutta 1st order method), Heun’s method (Runge-Kutta 2nd order method) and the Runge-Kutta 4th order method.
Figure 3 Comparison of Runge-Kutta methods of 1st, 2nd, and 4th order.