Chapter 06.03
Linear Regression–More Examples
Industrial Engineering

Example 1
As machines are used over long periods of time, the output product can get off target. Below is the average value of how much off target a product is getting manufactured as a function of machine use.

Table 1 Off target value as a function of machine use.

<table>
<thead>
<tr>
<th>Hours of Machine Use, (t)</th>
<th>30</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>39</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millimeters Off Target, (h)</td>
<td>1.10</td>
<td>1.21</td>
<td>1.25</td>
<td>1.23</td>
<td>1.30</td>
<td>1.40</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Regress the data to \(h = a_0 + a_1 t \). Find when the product will be 2 mm off target.

Solution
Table 2 shows the summations needed for the calculation of the constants of the regression model.

Table 2 Tabulation of data for calculation of needed summations.

<table>
<thead>
<tr>
<th>(i)</th>
<th>(t)</th>
<th>(h)</th>
<th>(t^2)</th>
<th>(t \times h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum_{i=1}^7)</td>
<td>260</td>
<td>8.91</td>
<td>9852</td>
<td>334.68</td>
</tr>
</tbody>
</table>

\(I \) | \(t \) Hours | \(h \) Millimeters | \(t^2 \) | \(t \times h \) Millimeter-Hour
\hline
\(-\) | \(- \) | \(- \) | \(- \) | \(- \) | \\
1 | 30 | 1.10 | 900 | 33 |
2 | 33 | 1.21 | 1089 | 39.93 |
3 | 34 | 1.25 | 1156 | 42.50 |
4 | 35 | 1.23 | 1225 | 43.05 |
5 | 39 | 1.30 | 1521 | 50.70 |
6 | 44 | 1.40 | 1936 | 61.6 |
7 | 45 | 1.42 | 2025 | 63.9 |
\hline
\[n = 7 \]
\[a_i = \frac{n \sum t_i h_i - \sum t_i \sum h_i}{n \sum t_i^2 - \left(\sum t_i \right)^2} \]
\[= \frac{7(334.68) - (260)(8.91)}{7(9852) - (260)^2} \]
\[= 0.019179 \text{ mm-h} \]

\[\bar{h} = \frac{\sum h_i}{n} \]
\[= \frac{8.91}{7} \]
\[= 1.2729 \text{ mm} \]

\[\bar{t} = \frac{\sum t_i}{n} \]
\[= \frac{260}{7} \]
\[= 37.143 \text{ h} \]

\[a_0 = \bar{h} - a_i \bar{t} \]
\[= 1.2729 - (0.019179)(37.143) \]
\[= 0.56050 \text{ mm-h} \]
\[h = 0.56050 + 0.019179t \]

Figure 1 Linear regression of hours of use vs. millimeters off target.

Solving for \(h = 2 \) mm, the regression model is \(h = 0.56050 + 0.019179t \)

\[
2 = 0.56050 + 0.019179t \\
t = \frac{2 - 0.56050}{0.019179} \\
t = 75.056 \text{ hours}
\]