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Chapter 03.03

Bisection Method of Solving a Nonlinear Equation– More Examples
Industrial Engineering

Example 1

You are working for a start-up computer assembly company and have been asked to determine the minimum number of computers that the shop will have to sell to make a profit.

The equation that gives the minimum number of computers 
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 to be sold after considering the total costs and the total sales is     
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Use the bisection method of finding roots of equations to find the minimum number of computers that need to be sold to make a profit. Conduct three iterations to estimate the root of the above equation. Find the absolute relative approximate error at the end of each iteration and the number of significant digits at least correct at the end of each iteration.

Solution

Let us assume
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Check if the function changes sign between 
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 and 
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Hence 
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So there is at least one root between 
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n

 and 
[image: image10.wmf]u
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, that is, between 50 and 100.

Iteration 1

The estimate of the root is
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Hence the root is bracketed between 
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 and 
[image: image17.wmf]m

n

, that is, between 50 and 75.  So, the lower and upper limits of the new bracket are
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At this point, the absolute relative approximate error 
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 cannot be calculated, as we do not have a previous approximation.

Iteration 2

The estimate of the root is
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Hence, the root is bracketed between 
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 and 
[image: image26.wmf]u
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, that is, between 62.5 and 75.  So the lower and upper limits of the new bracket are
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The absolute relative approximate error, 
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at the end of Iteration 2 is
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None of the significant digits are at least correct in the estimated root 
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as the absolute relative approximate error is greater that 5%.

Iteration 3
The estimate of the root is
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Hence, the root is bracketed between 
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 and 
[image: image39.wmf]m

n

, that is, between 62.5 and 68.75.  So the lower and upper limits of the new bracket are
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The absolute relative approximate error 
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 at the end of Iteration 3 is
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Still none of the significant digits are at least correct in the estimated root of the equation, as the absolute relative approximate error is greater than 5%. The estimated minimum number of computers that need to be sold to break even at the end of the third iteration is 69. Seven more iterations were conducted and these iterations are shown in the Table 1.

	Table 1 Root of 
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 as a function of the number of iterations for bisection method.

	Iteration
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At the end of the 
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 iteration,
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Hence the number of significant digits at least correct is given by the largest value of 
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 for which
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The number of significant digits at least correct in the estimated root 62.646 is 2.
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