Chapter 02.03 Differentiation of Discrete Functions-More Examples Industrial Engineering

Example 1

The failure rate h(t) of a direct methanol fuel cell (DMFC) is given by the formula

$$h(t) = -\frac{R'(t)}{R(t)}$$

where R(t) is the reliability at a certain time t, and the values of the reliability are given in Table 1.

Table 1 Reliability of DMFC system.

t (hrs)	0	1	10	100	1000	2000	3000	4000	5000
R(t)	1	0.9999	0.9998	0.9980	0.9802	0.9609	0.9419	0.9233	0.9050

Using the forward divided difference method, find the failure rate of the DMFC system at t = 50 hours.

Solution

$$R'(t_{i}) \approx \frac{R(t_{i+1}) - R(t_{i})}{\Delta t}$$

$$t_{i} = 10$$

$$t_{i+1} = 100$$

$$\Delta t = t_{i+1} - t_{i}$$

$$= 100 - 10$$

$$= 90$$

$$R'(50) \approx \frac{R(100) - R(10)}{90}$$

$$= \frac{0.9980 - 0.9998}{90}$$

$$= -2.0000 \times 10^{-5}$$

The reliability R(t) at t = 50 hours is,

$$R(50) \approx \frac{R(100) - R(10)}{100 - 10} (50 - 10) + R(10)$$
$$= (-2.0000 \times 10^{-5})(40) + 0.9998$$
$$= 0.999$$

The failure rate h(t) at t = 50 hours is then,

$$h(50) = -\frac{R'(50)}{R(50)}$$
$$h(50) = -\frac{(-2.0000 \times 10^{-5})}{0.999}$$
$$h(50) = 2.0020 \times 10^{-5}$$

Example 2

The failure rate h(t) of a direct methanol fuel cell (DMFC) is given by the formula

$$h(t) = -\frac{R'(t)}{R(t)}$$

where R(t) is the reliability at a certain time t, and the values of the reliability are given in Table 2.

Table 2 Reliability of DMFC system.

t (hrs)	0	1	10	100	1000	2000	3000	4000	5000
R(t)	1	0.9999	0.9998	0.9980	0.9802	0.9609	0.9419	0.9233	0.9050

Using a third order polynomial interpolant for reliability R(t), find the failure rate of the DMFC at t = 50 hours.

Solution

For third order polynomial interpolation (also called cubic interpolation), we choose the reliability given by

$$R(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

Since we want to find the reliability at t = 50, and we are using a third order polynomial, we need to choose the four points closest to t = 50 that also bracket t = 50 to evaluate it.

The four points are $t_0 = 1$, $t_1 = 10$, $t_2 = 100$, and $t_3 = 1000$ hours.

$$t_0 = 1, \ R(t_0) = 0.9999$$

$$t_1 = 10, \ R(t_1) = 0.9998$$

Figure 1 Graph of reliability as a function of time.

such that

$$R(1) = 0.9999 = a_0 + a_1(1) + a_2(1)^2 + a_3(1)^3$$

$$R(10) = 0.9998 = a_0 + a_1(10) + a_2(10)^2 + a_3(10)^3$$

$$R(100) = 0.9980 = a_0 + a_1(100) + a_2(100)^2 + a_3(100)^3$$

$$R(1000) = 0.9802 = a_0 + a_1(1000) + a_2(1000)^2 + a_3(1000)^3$$

Writing the four equations in matrix form, we have

[1	1	1	1	$\begin{bmatrix} a_0 \end{bmatrix}$	0.9999
1	10	100	1000	a_1	0.9998
1	100	10000	1×10^{6}	a_2	0.9980
1	1000	1×10^{6}	1×10 ⁹	a_3	0.9802

Solving the above gives

$$a_0 = 0.99991$$

$$a_1 = -1.0023 \times 10^{-5}$$

 $a_2 = -9.9788 \times 10^{-8}$
 $a_3 = 9.0101 \times 10^{-11}$

Hence

$$R(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3$$

= 0.99991 - 1.0023 × 10⁻⁵ t - 9.9788 × 10⁻⁸ t² + 9.0101 × 10⁻¹¹ t³, 1 ≤ t ≤ 1000

The acceleration at t = 50 is given by

$$R'(50) = \frac{d}{dt} R(t)\big|_{t=50}$$

Given that $R(t) = 0.99991 - 1.0023 \times 10^{-5} t - 9.9788 \times 10^{-8} t^2 + 9.0101 \times 10^{-11} t^3$, $1 \le t \le 1000$,

$$R'(t) = \frac{d}{dt}R(t)$$

= $\frac{d}{dt}(0.99991 - 1.0023 \times 10^{-5}t - 9.9788 \times 10^{-8}t^{2} + 9.0101 \times 10^{-11}t^{3})$
= $-1.0023 \times 10^{-5} - 1.9958 \times 10^{-7}t + 2.7030 \times 10^{-10}t^{2}, \quad 1 \le t \le 1000$
 $R'(50) = -1.0023 \times 10^{-5} - 1.9958 \times 10^{-7}(50) + 2.7030 \times 10^{-10}(50)^{2}$
= -1.9326×10^{-5}

Using the same function, we can also calculate the value of R(t) at t = 50.

$$R(t) = 0.99991 - 1.0023 \times 10^{-5} t - 9.9788 \times 10^{-8} t^{2} + 9.0101 \times 10^{-11} t^{3}, \quad 1 \le t \le 1000$$

$$R(50) = 0.99991 - 1.0023 \times 10^{-5} (50) - 9.9788 \times 10^{-8} (50)^{2} + 9.0101 \times 10^{-11} (50)^{3}$$

$$= 0.999917$$

The failure rate is then

$$h(t) = -\frac{R'(t)}{R(t)}$$
$$= -\frac{(-1.9326 \times 10^{-5})}{0.99917}$$
$$= 1.9343 \times 10^{-5}$$

Example 3

The failure rate h(t) of a direct methanol fuel cell (DMFC) is given by the formula

$$h(t) = -\frac{R'(t)}{R(t)}$$

where R(t) is the reliability at a certain time t, and the values of the reliability are given in Table 3.

Table 3 Reliability of DMFC system.

t (hrs)	0	1	10	100	1000	2000	3000	4000	5000
R(t)	1	0.9999	0.9998	0.9980	0.9802	0.9609	0.9419	0.9233	0.9050

Determine the value of the failure rate at t = 50 hours using second order Lagrangian polynomial interpolation for reliability.

Solution

For second order Lagrangian polynomial interpolation, we choose the reliability given by

$$R(t) = \left(\frac{t-t_1}{t_0-t_1}\right) \left(\frac{t-t_2}{t_0-t_2}\right) R(t_0) + \left(\frac{t-t_0}{t_1-t_0}\right) \left(\frac{t-t_2}{t_1-t_2}\right) R(t_1) + \left(\frac{t-t_0}{t_2-t_0}\right) \left(\frac{t-t_1}{t_2-t_1}\right) R(t_2)$$

Since we want to find the reliability at t = 50, and we are using a second order Lagrangian polynomial, we need to choose the three points closest to t = 50 that also bracket t = 50 to evaluate it. The three points are $t_0 = 1$, $t_1 = 10$, and $t_2 = 100$.

Differentiating the above equation gives

$$R'(t) = \frac{2t - (t_1 + t_2)}{(t_0 - t_1)(t_0 - t_2)} R(t_0) + \frac{2t - (t_0 + t_2)}{(t_1 - t_0)(t_1 - t_2)} R(t_1) + \frac{2t - (t_0 + t_1)}{(t_2 - t_0)(t_2 - t_1)} R(t_2)$$

Hence

$$R'(50) = \frac{2(50) - (10 + 100)}{(1 - 10)(1 - 100)} (0.9999) + \frac{2(50) - (1 + 100)}{(10 - 1)(10 - 100)} (0.9998) + \frac{2(50) - (1 + 10)}{(100 - 1)(100 - 10)} (0.9980)$$
$$= -1.9102 \times 10^{-5}$$

We must also find the value of R(t) at t = 50.

$$R(50) = \left(\frac{50-10}{1-10}\right) \left(\frac{50-100}{1-100}\right) (0.9999) + \left(\frac{50-1}{10-1}\right) \left(\frac{50-100}{10-100}\right) (0.9998) + \left(\frac{50-1}{100-1}\right) \left(\frac{50-10}{100-10}\right) (0.9980) = 0.99918$$

The failure rate is then

$$h(t) = -\frac{R'(t)}{R(t)}$$

$$h(50) = -\frac{\left(-1.9102 \times 10^{-5}\right)}{0.99918}$$
$$= 1.9118 \times 10^{-5}$$

DIFFEREN	DIFFERENTIATION					
Topic	Discrete Functions-More Examples					
Summary	Examples of Discrete Functions					
Major	Industrial Engineering					
Authors	Autar Kaw					
Date	August 7, 2009					
Web Site	http://numericalmethods.eng.usf.edu					