Chapter 08.03
Runge-Kutta 2nd Order Method for Ordinary Differential Equations-More Examples
Civil Engineering

Example 1
A polluted lake has an initial concentration of a bacteria of 10^7 parts/m3, while the acceptable level is only 5×10^6 parts/m3. The concentration of the bacteria will reduce as fresh water enters the lake. The differential equation that governs the concentration C of the pollutant as a function of time (in weeks) is given by

$$\frac{dC}{dt} + 0.06C = 0, \ C(0) = 10^7$$

Using Runge-Kutta 2nd order method and a step size of 3.5 weeks, find the concentration of the pollutant after 7 weeks.

Solution

$$\frac{dC}{dt} = -0.06C$$
$$f(t, C) = -0.06C$$

Per Heun’s method

$$C_{i+1} = C_i + \left(\frac{1}{2} k_1 + \frac{1}{2} k_2 \right) h$$

$$k_1 = f(t_i, C_i)$$
$$k_2 = f(t_i + h, C_i + k_i h)$$

For $i = 0, \ t_0 = 0, \ C_0 = 10^7$

$$k_1 = f(t_0, C_0)$$
$$= f(0, 10^7)$$
$$= -0.06(10^7)$$
$$= -600000$$

$$k_2 = f(t_0 + h, C_0 + k_i h)$$
$$= f(0 + 3.5, 10^7 + (-600000)3.5)$$
$$= f(3.5, 7.9 \times 10^6)$$
$$= -0.06(7.9 \times 10^6)$$
\[C_1 = C_0 + \left(\frac{1}{2} k_1 + \frac{1}{2} k_2 \right) h \]
\[= 10^7 + \left(\frac{1}{2} (-600000) + \frac{1}{2} (-474000) \right) 3.5 \]
\[= 10^7 + (-537000) 3.5 \]
\[= 8.1205 \times 10^6 \text{ parts/m}^3 \]

\(C_1 \) is the approximate concentration of bacteria at

\[t = t_i = t_0 + h = 0 + 3.5 = 3.5 \text{ weeks} \]
\[C(3.5) \approx C_1 = 8.1205 \times 10^6 \text{ parts/m}^3 \]

For \(i = 1, t_i = t_0 + h = 0 + 3.5 = 3.5, C_1 = 8.1205 \times 10^6 \)

\[k_1 = f(t_i, C_i) \]
\[= f(3.5, 8.1205 \times 10^6) \]
\[= -0.06(8.1205 \times 10^6) \]
\[= -487230 \]

\[k_2 = f(t_i + h, C_i + k_1 h) \]
\[= f(3.5 + 3.5, 8.1205 \times 10^6 + (-487230)3.5) \]
\[= f(7, 6415200) \]
\[= -0.06(6415200) \]
\[= -384910 \]

\[C_2 = C_1 + \left(\frac{1}{2} k_1 + \frac{1}{2} k_2 \right) h \]
\[= 8.1205 \times 10^6 + \left(\frac{1}{2} (-487230) + \frac{1}{2} (-384910) \right) 3.5 \]
\[= 8.1205 \times 10^6 + (-436070) 3.5 \]
\[= 6.5943 \times 10^6 \text{ parts/m}^3 \]

\(C_2 \) is the approximate concentration of bacteria at

\[t = t_2 = t_i + h = 3.5 + 3.5 = 7 \text{ weeks} \]
\[C(7) \approx C_2 = 6.5943 \times 10^6 \text{ parts/m}^3 \]

The exact solution of the ordinary differential equation is given by

\[C(t) = 1 \times 10^7 e^{-\frac{3t}{50}} \]

The solution to this nonlinear equation at \(t = 7 \) weeks is

\[C(7) = 6.5705 \times 10^6 \text{ parts/m}^3 \]

The results from Heun’s method are compared with exact results in Figure 1.
Using smaller step size would increases the accuracy of the result as given in Table 1 and Figure 2.

Table 1 Effect of step size for Heun’s method.

| Step size, h | $C(7)$ | E_t | $|\varepsilon_t|\%$ |
|---------------|----------------|---------|-------------------|
| 7 | 6.6820×10^6 | -111530 | 1.6975 |
| 3.5 | 6.5943×10^6 | -23784 | 0.36198 |
| 1.75 | 6.5760×10^6 | -5489.1 | 0.083542 |
| 0.875 | 6.5718×10^6 | -1318.8 | 0.020071 |
| 0.4375 | 6.5708×10^6 | -323.24 | 0.0049195 |
In Table 2, the Euler’s method and Runge-Kutta 2nd order method results are shown as a function of step size.

<table>
<thead>
<tr>
<th>Step size, h</th>
<th>Euler</th>
<th>Heun</th>
<th>Midpoint</th>
<th>Ralston</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5.8000×10^6</td>
<td>6.6820×10^6</td>
<td>6.6820×10^6</td>
<td>6.6820×10^6</td>
</tr>
<tr>
<td>3.5</td>
<td>6.2410×10^6</td>
<td>6.5943×10^6</td>
<td>6.5943×10^6</td>
<td>6.5943×10^6</td>
</tr>
<tr>
<td>1.75</td>
<td>6.4160×10^6</td>
<td>6.5760×10^6</td>
<td>6.5760×10^6</td>
<td>6.5760×10^6</td>
</tr>
<tr>
<td>0.875</td>
<td>6.4960×10^6</td>
<td>6.5718×10^6</td>
<td>6.5718×10^6</td>
<td>6.5718×10^6</td>
</tr>
<tr>
<td>0.4375</td>
<td>6.5340×10^6</td>
<td>6.5708×10^6</td>
<td>6.5708×10^6</td>
<td>6.5708×10^6</td>
</tr>
</tbody>
</table>

While in Figure 3, the comparison is shown over the range of time.
Figure 3 Comparison of Euler and Runge Kutta methods with exact results over time.