Chapter 05.04
Lagrangian Interpolation – More Examples
Civil Engineering

Example 1
To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the
thermocline. The characteristic feature of this area is the sudden change in temperature. We
are given the temperature vs. depth data for a lake in Table 1.

<table>
<thead>
<tr>
<th>Temperature, (T) (°C)</th>
<th>Depth, (z) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>0</td>
</tr>
<tr>
<td>19.1</td>
<td>−1</td>
</tr>
<tr>
<td>19</td>
<td>−2</td>
</tr>
<tr>
<td>18.8</td>
<td>−3</td>
</tr>
<tr>
<td>18.7</td>
<td>−4</td>
</tr>
<tr>
<td>18.3</td>
<td>−5</td>
</tr>
<tr>
<td>18.2</td>
<td>−6</td>
</tr>
<tr>
<td>17.6</td>
<td>−7</td>
</tr>
<tr>
<td>11.7</td>
<td>−8</td>
</tr>
<tr>
<td>9.9</td>
<td>−9</td>
</tr>
<tr>
<td>9.1</td>
<td>−10</td>
</tr>
</tbody>
</table>

Table 1 Temperature vs. depth for a lake.
Using the given data, we see the largest change in temperature is between \(z = -8 \) m and \(z = -7 \) m. Determine the value of the temperature at \(z = -7.5 \) m using a first order Lagrange polynomial.

Solution

For first order Lagrange polynomial interpolation (also called linear interpolation), the temperature is given by

\[
T(z) = \sum_{i=0}^{1} L_i(z)T(z_i)
\]

\[
= L_0(z)T(z_0) + L_1(z)T(z_1)
\]
Since we want to find the temperature at $z = -7.5$ m, we need to choose the two data points that are closest to $z = -7.5$ m that also bracket $z = -7.5$ m to evaluate it. The two points are $z_0 = -8$ and $z_1 = -7$.

Then

$$z_0 = -8, \ T(z_0) = 11.7$$

$$z_1 = -7, \ T(z_1) = 17.6$$

gives

$$L_0(z) = \prod_{\substack{j=0\ j\neq 0}}^{1} \frac{z - z_j}{z_0 - z_j}$$

$$= \frac{z - z_1}{z_0 - z_1}$$

$$L_1(z) = \prod_{\substack{j=0\ j\neq 1}}^{1} \frac{z - z_j}{z_1 - z_j}$$

$$= \frac{z - z_0}{z_1 - z_0}$$

Hence

$$T(z) = \frac{z - z_1}{z_0 - z_1} T(z_0) + \frac{z - z_0}{z_1 - z_0} T(z_1)$$

$$= \frac{z + 7}{-8 + 7} (11.7) + \frac{z + 8}{-7 + 8} (17.6), \quad -8 \leq z \leq -7$$

$$T(-7.5) = \frac{-7.5 + 7}{-8 + 7} (11.7) + \frac{-7.5 + 8}{-7 + 8} (17.6)$$
\[T(z) = 0.5(11.7) + 0.5(17.6) = 14.65^\circ C \]

You can see that \(L_0(z) = 0.5 \) and \(L_i(z) = 0.5 \) are like weightages given to the temperatures at \(z = -8 \text{ m} \) and \(z = -7 \text{ m} \) to calculate the temperature at \(z = -7.5 \text{ m} \).

Example 2

To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth data for a lake in Table 2.

<table>
<thead>
<tr>
<th>Temperature, (T) (°C)</th>
<th>Depth, (z) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>0</td>
</tr>
<tr>
<td>19.1</td>
<td>-1</td>
</tr>
<tr>
<td>19</td>
<td>-2</td>
</tr>
<tr>
<td>18.8</td>
<td>-3</td>
</tr>
<tr>
<td>18.7</td>
<td>-4</td>
</tr>
<tr>
<td>18.3</td>
<td>-5</td>
</tr>
<tr>
<td>18.2</td>
<td>-6</td>
</tr>
<tr>
<td>17.6</td>
<td>-7</td>
</tr>
<tr>
<td>11.7</td>
<td>-8</td>
</tr>
<tr>
<td>9.9</td>
<td>-9</td>
</tr>
<tr>
<td>9.1</td>
<td>-10</td>
</tr>
</tbody>
</table>

Using the given data, we see the largest change in temperature is between \(z = -8 \text{ m} \) and \(z = -7 \text{ m} \). Determine the value of the temperature at \(z = -7.5 \text{ m} \) using a second order Lagrange polynomial. Find the absolute relative approximate error for the second order polynomial approximation.

Solution

For second order Lagrange polynomial interpolation (also called quadratic interpolation), the temperature is given by

\[T(z) = \sum_{i=0}^{2} L_i(z)T(z_i) \]

\[= L_0(z)T(z_0) + L_1(z)T(z_1) + L_2(z)T(z_2) \]
Since we want to find the temperature at $z = -7.5$, we need to choose the three data points that are closest to $z = -7.5$ that also bracket $z = -7.5$ to evaluate it. These three points are $z_0 = -9$, $z_1 = -8$ and $z_2 = -7$. (Choosing the three points as $z_0 = -8$, $z_1 = -7$ and $z_2 = -6$ is equally valid.)

Then

$$z_0 = -9, \quad T(z_0) = 9.9$$
$$z_1 = -8, \quad T(z_1) = 11.7$$
$$z_2 = -7, \quad T(z_2) = 17.6$$

gives

$$L_0(z) = \prod_{j=0}^{n} \frac{z - z_j}{z_0 - z_j}$$

$$= \left(\frac{z - z_1}{z_0 - z_1} \right) \left(\frac{z - z_2}{z_0 - z_2} \right)$$

$$L_1(z) = \prod_{j=1}^{n} \frac{z - z_j}{z_1 - z_j}$$

$$= \left(\frac{z - z_0}{z_1 - z_0} \right) \left(\frac{z - z_2}{z_1 - z_2} \right)$$

$$L_2(z) = \prod_{j=2}^{n} \frac{z - z_j}{z_2 - z_j}$$
\[
\frac{z - z_0}{z_2 - z_0} \frac{z - z_1}{z_2 - z_1}
\]

Hence

\[
T(z) = \left(\frac{z - z_1}{z_0 - z_1} \right) \left(\frac{z - z_2}{z_0 - z_2} \right) T(z_0) + \left(\frac{z - z_0}{z_1 - z_0} \right) \left(\frac{z - z_2}{z_1 - z_2} \right) T(z_1) + \left(\frac{z - z_0}{z_2 - z_0} \right) \left(\frac{z - z_1}{z_2 - z_1} \right) T(z_2),
\]

\[z_0 \leq z \leq z_2\]

\[
T(-7.5) = \frac{(-7.5 + 8)(-7.5 + 7)}{(-9 + 8)(-9 + 7)} (9.9) + \frac{(-7.5 + 9)(-7.5 + 7)}{(-8 + 9)(-8 + 7)} (11.7)
\]

\[+ \frac{(-7.5 + 9)(-7.5 + 8)}{(-7 + 9)(-7 + 8)} (17.6)
\]

\[= (-0.125)(9.9) + (0.75)(11.7) + (0.375)(17.6)
\]

\[= 14.138^\circ C
\]

The absolute relative approximate error \(|\varepsilon_a|\) obtained between the results from the first and second order polynomial is

\[
|\varepsilon_a| = \left| \frac{14.138 - 14.65}{14.138} \right| \times 100
\]

\[= 3.6251\%
\]

Example 3

To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth data for a lake in Table 3.

Table 3 Temperature vs. depth for a lake.

<table>
<thead>
<tr>
<th>Temperature, (T) (({}^\circ C))</th>
<th>Depth, (z) ((m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>0</td>
</tr>
<tr>
<td>19.1</td>
<td>-1</td>
</tr>
<tr>
<td>19</td>
<td>-2</td>
</tr>
<tr>
<td>18.8</td>
<td>-3</td>
</tr>
<tr>
<td>18.7</td>
<td>-4</td>
</tr>
<tr>
<td>18.3</td>
<td>-5</td>
</tr>
<tr>
<td>18.2</td>
<td>-6</td>
</tr>
<tr>
<td>17.6</td>
<td>-7</td>
</tr>
<tr>
<td>11.7</td>
<td>-8</td>
</tr>
<tr>
<td>9.9</td>
<td>-9</td>
</tr>
<tr>
<td>9.1</td>
<td>-10</td>
</tr>
</tbody>
</table>

Using the given data, we see the largest change in temperature is between \(z = -8\) m and \(z = -7\) m.
a) Determine the value of the temperature at \(z = -7.5 \) m using a third order Lagrange polynomial. Find the absolute relative approximate error for the third order polynomial approximation.

b) The position where the thermocline exists is given where \(\frac{d^2 T}{dz^2} = 0 \). Using the expression from part (a), what is the value of the depth at which the thermocline exists?

Solution

a) For third order Lagrange polynomial interpolation (also called cubic interpolation), we choose the temperature given by

\[
T(z) = \sum_{i=0}^{3} L_i(z) T(z_i)
\]

\[
= L_0(z)T(z_0) + L_1(z)T(z_1) + L_2(z)T(z_2) + L_3(z)T(z_3)
\]

Since we want to find the temperature at \(z = -7.5 \), we need to choose the four data points that are closest to \(z = -7.5 \) that also bracket \(z = -7.5 \) to evaluate it. The four data points are \(z_0 = -9, \ z_1 = -8, \ z_2 = -7, \) and \(z_3 = -6 \).

Then

\[
\begin{align*}
T(z_0) &= 9.9 \\
T(z_1) &= 11.7 \\
T(z_2) &= 17.6 \\
T(z_3) &= 18.2
\end{align*}
\]
gives

\[L_0(z) = \prod_{j=0, j \neq 0}^{3} \frac{z - z_j}{z_0 - z_j} \]

\[= \left(\frac{z - z_1}{z_0 - z_1} \right) \left(\frac{z - z_2}{z_0 - z_2} \right) \left(\frac{z - z_3}{z_0 - z_3} \right) \]

\[L_1(z) = \prod_{j=0, j \neq 1}^{3} \frac{z - z_j}{z_1 - z_j} \]

\[= \left(\frac{z - z_0}{z_1 - z_0} \right) \left(\frac{z - z_2}{z_1 - z_2} \right) \left(\frac{z - z_3}{z_1 - z_3} \right) \]

\[L_2(z) = \prod_{j=0, j \neq 2}^{3} \frac{z - z_j}{z_2 - z_j} \]

\[= \left(\frac{z - z_0}{z_2 - z_0} \right) \left(\frac{z - z_1}{z_2 - z_1} \right) \left(\frac{z - z_3}{z_2 - z_3} \right) \]

\[L_3(z) = \prod_{j=0, j \neq 3}^{3} \frac{z - z_j}{z_3 - z_j} \]

\[= \left(\frac{z - z_0}{z_3 - z_0} \right) \left(\frac{z - z_1}{z_3 - z_1} \right) \left(\frac{z - z_2}{z_3 - z_2} \right) \]

Hence

\[T(z) = \left(\frac{z - z_1}{z_0 - z_1} \right) \left(\frac{z - z_2}{z_0 - z_2} \right) \left(\frac{z - z_3}{z_0 - z_3} \right) T(z_0) + \left(\frac{z - z_0}{z_1 - z_0} \right) \left(\frac{z - z_2}{z_1 - z_2} \right) \left(\frac{z - z_3}{z_1 - z_3} \right) T(z_1) \]

\[+ \left(\frac{z - z_0}{z_2 - z_0} \right) \left(\frac{z - z_1}{z_2 - z_1} \right) \left(\frac{z - z_3}{z_2 - z_3} \right) T(z_2) + \left(\frac{z - z_0}{z_3 - z_0} \right) \left(\frac{z - z_1}{z_3 - z_1} \right) \left(\frac{z - z_2}{z_3 - z_2} \right) T(z_3) \]

\[T(-7.5) = \frac{(-7.5 + 8)(-7.5 + 7)(-7.5 + 6)}{(-9 + 8)(-9 + 7)(-9 + 6)}(9.9) + \frac{(-7.5 + 9)(-7.5 + 7)(-7.5 + 6)}{(-8 + 9)(-8 + 7)(-8 + 6)}(11.7) \]

\[+ \frac{(-7.5 + 9)(-7.5 + 8)(-7.5 + 6)}{(-7 + 9)(-7 + 8)(-7 + 6)}(17.6) + \frac{(-7.5 + 9)(-7.5 + 8)(-7.5 + 7)}{(-6 + 9)(-6 + 8)(-6 + 7)}(18.2) \]

\[= (-0.0625)(9.9) + (0.5625)(11.7) + (0.5625)(17.6) + (-0.0625)(18.2) \]

\[= 14.725^\circ C \]

The absolute relative approximate error \(|\varepsilon_d| \) obtained between the results from the second and third order polynomial is

\[|\varepsilon_d| = \left| \frac{14.725 - 14.138}{14.725} \right| \times 100 \]

\[= 3.9898\% \]
b) To find the position of the thermocline, we must find the points of inflection of the third order polynomial, given by \(\frac{d^2 T}{dz^2} = 0 \).

\[
T(z) = \frac{(z + 8)(z + 7)(z + 6)}{(-9 + 8)(-9 + 7)(-9 + 6)} (9.9) + \frac{(z + 9)(z + 7)(z + 6)}{(-8 + 9)(-8 + 7)(-8 + 6)} (11.7)
+ \frac{(z + 9)(z + 8)(z + 6)}{(-7 + 9)(-7 + 8)(-7 + 6)} (17.6) + \frac{(z + 9)(z + 8)(z + 7)}{(-6 + 9)(-6 + 8)(-6 + 7)} (18.2)
\]

\[
= -615.9 - 262.58z - 35.55z^2 - 1.5667z^3, \quad -9 \leq z \leq -6
\]

\[
\frac{dT}{dz} = -262.58 - 71.1z - 4.7z^2, \quad -9 \leq z \leq -6
\]

\[
\frac{d^2T}{dz^2} = -71.1 - 9.4z, \quad -9 \leq z \leq -6
\]

Simply setting this expression equal to zero, we get

\[
0 = -71.1 - 9.4z, \quad -9 \leq z \leq -6
\]

\[
z = -7.5638 \text{ m}
\]

This answer can be verified due to the fact that it falls within the specified range of the third order polynomial and it also falls within the region of the greatest temperature change in the collected data from the lake.