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Chapter 05.02
Direct Method of Interpolation – More Examples
Civil Engineering
Example 1

To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline.  The characteristic feature of this area is the sudden change in temperature.  We are given the temperature vs. depth data for a lake in Table 1.
                                         Table 1  Temperature vs. depth for a lake.
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[image: image1.wmf](

)

C

  

°

T


	Depth, 
[image: image2.wmf](

)

m

  

z



	19.1
	0

	19.1
	–1

	19
	–2

	18.8
	–3

	18.7
	–4

	18.3
	–5

	18.2
	–6

	17.6
	–7

	11.7
	–8

	9.9
	–9

	9.1
	–10


	[image: image3.png]Depth vs. Temperature

10 15 20
Temperature (°C)

25






	                          Figure 1  Temperature vs. depth of a lake.


Using the given data, we see the largest change in temperature is between 
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 using the direct method of interpolation and a first order polynomial.

Solution

For first order polynomial interpolation (also called linear interpolation), we choose the temperature given by
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	         Figure 2   Linear interpolation.


Since we want to find the temperature at 
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, and we are using a first order polynomial, we need to choose the two data points that are closest to 
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Writing the equations in matrix form, we have
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Solving the above two equations gives

 
[image: image19.wmf]9

.

58

0

=

a

 and  
[image: image20.wmf]9

.

5

1

=

a


Hence


[image: image21.wmf](

)

z

a

a

z

T

1

0

+

=



[image: image22.wmf](

)

7

8

,

9

.

5

9

.

58

-

£

£

-

+

=

z

z

z

T



[image: image23.wmf](

)

(

)

5

.

7

9

.

5

9

.

58

5

.

7

-

+

=

-

T



              
[image: image24.wmf]C

65

.

14

°

=


Example 2

To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth data for a lake in Table 2.

                                         Table 2  Temperature vs. depth for a lake.
	Temperature, 
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	19.1
	0

	19.1
	–1

	19
	–2

	18.8
	–3

	18.7
	–4

	18.3
	–5

	18.2
	–6

	17.6
	–7

	11.7
	–8

	9.9
	–9

	9.1
	–10


Using the given data, we see the largest change in temperature is between 
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 using the direct method of interpolation and a second order polynomial.  Find the absolute relative approximate error for the second order polynomial approximation.

Solution
For second order polynomial interpolation (also called quadratic interpolation), we choose the velocity given by
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	        Figure 3   Quadratic interpolation.


Since we want to find the temperature at 
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, and we are using a second order polynomial, we need to choose the three data points that are closest to 
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Writing the three equations in matrix form
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and the solution of the above three equations gives
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The absolute relative approximate error 
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 obtained between the results from the first and second order polynomial is
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Example 3
To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the thermocline. The characteristic feature of this area is the sudden change in temperature. We are given the temperature vs. depth data for a lake in Table 3.
                                         Table 3  Temperature vs. depth for a lake.
	Temperature, 
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	0
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	–2
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	–3

	18.7
	–4

	18.3
	–5

	18.2
	–6
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Using the given data, we see the largest change in temperature is between 
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 using the direct method of interpolation and a third order polynomial. Find the absolute relative approximate error for the third order polynomial approximation.

b) The position where the thermocline exists is given where 
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. Using the expression from part (a), what is the value of the depth at which the thermocline exists?
Solution
a) For third order polynomial interpolation (also called cubic interpolation), we choose the temperature given by
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	         Figure 4  Cubic interpolation.


Since we want to find the temperature at 
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, and we are using a third order polynomial, we need to choose the four data points closest to 
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Writing the four equations in matrix form, we have
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Solving the above four equations gives
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The absolute relative approximate error 
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 obtained between the results from the second and third order polynomial is
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b) To find the position of the thermocline, we must find the points of inflection of the third order polynomial, given by 
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Simply setting this expression equal to zero, we get
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This answer can be verified due to the fact that it falls within the specified range of the third order polynomial and it also falls within the region of the greatest temperature change in the collected data from the lake.
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