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Note: This worksheet demonstrates the use of Maple to illustrate the procedure to regress a given data 
set to a nonlinear polynomial model.

Introduction
Given n data points (x1, y1), (x2, y2), ..., (xn, yn), least squares method can be used to regress the data to
a mth order polynomial.

y = a0 + a1x + a2x
2 + ... + amxm,  m<n                                                                                                      

         (1)

The residual at each data point is given by 

Ei = yi - a0 - aix
i ... -amxi

m                                                                                                                            
        (2)

The sum of the square of the residuals is given by 

Sr = ∑ Ei
2,  i = 1..n                                                                                                                                     

         (3)

To find the constants of the polynomial regression model, we put the derivatives with respect to ai to 
zero, that is,

dSr / da0 = ∑ [2(yi - a0 ...- aix
i ... -amxi

m,   i = 1..n)(-1)] = 0                                                                         
         (4.a)
dSr / da1 = ∑ [2(yi - a0 ... - aix

i ... -amxi
m,   i = 1..n)(-xi)] = 0                                                                        

         (4.b)
.                           .                          .                       .                .                   .                    .                    .   
            .
.                           .                          .                       .                .                   .                    .                    .   
            .
dSr / dam = ∑ [2(yi - a0 ... - aix

i ... -amxi
m,   i = 1..n)(-xi

m)] = 0                                                                     



(2.1)

O 

         (4.m)

Setting those equations in matrix form gives

|    n          ∑(xi)       ....      >(xi)
m    |      |   a0  |  =  |      >(yi)   |

|  >(xi)     >(xi)
2        ....      >(xi)

m+1  |      |   a1  |  = |    >(xiyi)   |
|  ......       .......         ....       .........    |      |  ..... |  =  |      .........  |
|  >(xi)

m  >(xi)
m+1   ....      >(xi)

2m    |      |  am  |  =  |   >(xi
myi)  |

The above simultaneous linear equations are solved for the (m+1) constants a0, a1, ... , am . To learn 
more about polynomial regression see the worksheet on Nonlinear Regression.

Section 1: Input data
Below are the input parameters to begin the simulation. This is the only section that requires user 
input. Once the values are entered, Maple will will generate a polynomial regression model for the 
given data set. It will also calculate the variance each order of polynomial model specified with the
Low_order to High_order range so that user can determine the optimum order of polynomial model 
to use.

Input Parameters:
X = array of x values
Y = array of y values
n = Number of data points
Order_poly = desired order of polynomial regression model
Low_order = Lowest order of polynomial to check for optimum order
High_order = Highest order of polynomial to check for optimum order. NOTE: High_order must be
less than or equal to (n-1).

restart;
X:=[80,40,0,-40,-80,-120,-160,-200,-240,-280,-320];
Y:=[6.47,6.24,6,5.72,5.43,5.09,4.72,4.30,3.83,3.33,2.76];
n:=11;
Order_poly:=1;
Low_order:=1;
High_order:=6;

X := 80, 40, 0, K40, K80, K120, K160, K200, K240, K280, K320
Y := 6.47, 6.24, 6, 5.72, 5.43, 5.09, 4.72, 4.30, 3.83, 3.33, 2.76

n := 11
Order_poly := 1
Low_order := 1
High_order := 6
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Section 2: Defining the system of simultaneous linear equations 
in matrix form
In this section, the coefficient matrix "M" and right hand side vector "C" are calculated and 
subsequently used to determine the solution vector that contains the coefficients of the polynomial 
model a0, a1, a2, ..., am. 

Calculating the coefficient matrix, "M"

The following procedure defines each value of the coefficient matrix.

#Creating the matrix size according to the order of polynomial model:
M:=Matrix(1..Order_poly+1,1..Order_poly+1):
#Determing each value of the first row of matrix "M":
M[1,1]:=n:
for i from 2 by 1 to (Order_poly+1) do
     for j from 1 by 1 to n do
          M[1,i]:=M[1,i]+(X[j])^(i-1);
     end do;
end do;
#Calculating the remaining values of the coefficent matrix:
for i from 1 by 1 to Order_poly+1 do
     for k from 2 by 1 to Order_poly+1 do
          for j from 1 by 1 to n do
               M[k,i]:=M[k,i]+(X[j])^(i+k-2):
          end do:
     end do:
end do:
print(`M = `, M);
     

M = ,
1.10000#101

K1.32000#103

K1.32000#103 3.34400#105

Calculating the right hand side vector, "C"
       
 Below, the right hand side vector "C" is determined.

#Creating the vector size according to the order of polynomial model:
C:=Matrix(1..Order_poly+1,1):
#Finding each value of "C":
for i from 1 by 1 to n do
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     C[1,1]:=C[1,1]+Y[i]:
end do:
for i from 2 by 1 to Order_poly+1 do
     for j from 1 by 1 to n do
           C[i,1]:=C[i,1]+(X[j]^(i-1))*Y[j]:
     end do:
end do:
print(`C=`,C);

C=,
53.89

K4856.80

Section 3: Solving the system of simultaneous linear equations 
M*a=C
Now that the right hand side vector "C" and coefficient matrix "M" have been calculated, they can be
used to solve for the solution vector "a" which contains the coefficients of the polynomial model as 
a = [a0,a1, .... , am].

#Using Maple to solve for the system of linear equations:
with(LinearAlgebra):
a:=LinearSolve(M,C);

a :=
5.99682

9.14773#10 -3

The polynomial regression model is as follows:

for i from 1 by 1 to n do
     y1:=a[1,1]:
     for j from 1 by 1 to Order_poly do
          y1:=y1+(a[j+1,1]*(x^j)):
     end do:
end do:
y:=unapply(y1,x);

y := x/5.99681818181818204C0.00914772727272727266 x

The following plot shows the regression model as well as the data points.



O observed:=[seq([X[i],Y[i]],i=1..n)];
predicted:=y(x):
ttl:=cat(`Polynomial Regression Model of order `,Order_poly):
plot([observed,predicted],x=X[1]..X[n],title=ttl,style=
[point,line],symbol=solidcircle,thickness=2,symbolsize=15);

observed := 80, 6.47 , 40, 6.24 , 0, 6 , K40, 5.72 , K80, 5.43 , K120, 5.09 , K160,
4.72 , K200, 4.30 , K240, 3.83 , K280, 3.33 , K320, 2.76
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Polynomial Regression Model of order 1

Section 4: Optimum Order
In this section the user can determine the optimum order of the polynomial model by plotting the 
variance defined as

                                                                                                Sr      



O 

                                                                                           n-(m+1)

as a function of m, where n is the number of data points, Sr is the sum of the square of residuals and
m is the order of the polynomial. The optimum order is considered as to be the one where the value of
the variance   Sr /[ n-(m+1)]  is minimum or where its value is significantly decreasing.

In the following procedure, an mth order polynomial regression model is calculated for each order 
specified in the Low_order to High_order range. Maple then returns the variance of each model. 
The worksheet does not choose the order of the optimum polynomial for regression for you.  Look at 
the plot of the variance as a function of the order of the polynomial.  The optimum polynomial is one 
after which there is no statistical significant decrease in the variance.  

Many a times, the variance may show signs of decreasing and then increasing as a function of the 
order of the polynomial regression model.  Such increases in the variance are normal as the variance 
is calculated as the ratio between the sum of the squares of the residuals and the difference between 
the number of data points and number of constants of the polynomial model.  Both the numerator and
denominator decrease as the order of the polynomial is increased.  However, as the order of the 
polynomial increases, the coefficient matrix in the calculation of the constants of the model becomes 
more ill-conditioned. This ill-conditioning of the coefficient matrix results in fewer significant digits 
that can be trusted to be correct in the coefficients of the polynomial model, and hence artificially 
amplify the value of the variance.

Procedure for calculating variance

Sr=Matrix(1..High_order):
#In the procedure, "m" is the order of polynomial model being calculated, "M" is the 
coefficient matrix, "c" is the RHS vector, and "A" is the solution vector containing the 
coefficients of the polynomial model. 
for m from Low_order by 1 to High_order do
     M:=Matrix(1..(m+1),1..(m+1)):
     M[1,1]:=n:
     for i from 2 by 1 to m+1 do
          M[1,i]:=0:
          for j from 1 by 1 to n do
                M[1,i]:=M[1,i]+X[j]^(i-1):
          end do:
     end do:
     for i from 1 by 1 to m+1 do
          for k from 2 by 1 to m+1 do
               M[k,i]:=0:
               for j from 1 by 1 to n do
                    M[k,i]:=M[k,i]+X[j]^(i+k-2):
               end do:
          end do:
     end do:
#Calculating the RHS matrix for the given order m:



O 

     c:=Matrix(1..(m+1),1):
     c[1,1]:=0;
     for i from 1 by 1 to n do
          c[1,1]:=c[1,1]+Y[i]:
     end do:
     for i from 2 by 1 to m+1 do
          c[i,1]:=0:
          for j from 1 by 1 to n do
               c[i,1]:=c[i,1]+(X[j]^(i-1))*Y[j]:
          end do:
      end do:
#Calculating the coefficients of the mth order polynomial model:
     A:=LinearSolve(M,c):
#Determining Sr:
     Sr[m]:=0:
     for i from 1 by 1 to n do
          summ:=0;
          for j from 1 by 1 to m do
               summ:=summ+A[j+1,1]*(X[i]^j);
          end do;
          Sr[m]:=Sr[m]+(Y[i]-(A[1,1]+summ))^2;
     end do;
end do:
#Calculating the variance for the mth order polynomial:
var:=array(1..High_order):
for i from Low_order by 1 to High_order do
     var[i]:=0;
     var[i]:=Sr[i]/(n-(i+1));
end do:
print(`variance = `,var);
variance:=[seq([i,var[i]],i=Low_order..High_order)]:
plot(variance,title="Variance vs Order of Polynomial",labels=
["Order of Polynomial","Sr/[n-(m+1)]"]);
    

variance = , 0.03487222228, 0.0003808857852, 0.00002737262774, 0.00002610722803, 
0.00003081585376, 0.00003249486072
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Conclusion
Using Maple, we are able to regress a given data set to a polynomial model of the mth order.

Question 1: Water is flowing through a pipe of radius 0.5 feet and flow velocity, v measurements are 
made from the center of the wall of the pipe as follows:

Radial 
Location, r
(ft)

Velocity,
v (ft/s)



0 10

0.08 9.7

0.17 8.9

0.25 7.5

0.32 5.6

0.42 3.1

0.50 0

a) Regress the data to 
v = a0(1-(r2/a2)) , where a is the radius of the pipe.
b) Find the flow rate, Q through the pipe. (Hint: Q = ∫2πrvdr, r=0..a). 

Question 2: Thermal expansion coefficient of steel varies with temperature as given in the table 
below

Temperature, T Thermal 
expansion 

coefficient,  α*
E-06

80 6.47

60 6.36

40 6.24

20 6.12

0 6.00

K20 5.86

K40 5.72

K60 5.58

K80 5.43

K100 5.28

K120 5.09

K140 4.91

K160 4.72

K180 4.52



K200 4.30

K220 4.08

K240 3.83

K260 3.58

K280 3.33

K300 3.07

K320 2.76

K340 2.45

a) Regress the data to a second order polynomial, α = a0 + a1T + a2T
2.

b) Find the optimum order of polynomial for the regression model.
c) Find the reduction in the diameter of a steel cylinder of diameter 12.5" if it is cooled from a room 
temperature of 80°F to -108°F.

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the 
author are responsible for any errors contained within and are not liable for any damages resulting 
from the use of this material. This application is intended for non-commercial, non-profit use only. 
Contact the author for permission if you wish to use this application in for-profit activities.


