5/21/07 3:41 PM

1 of 4

Naïve Gaussian Elimination Method University of South Florida United States of America kaw@eng.usf.edu NOTE: This worksheet demonstrates the use of Matlab to illustrate Naïve Gaussian Elimination, a numerical technique used in solving a system of simultaneous linear equations. One of the most popular numerical techniques for solving simultaneous linear equations is Naïve Gaussian Elimination method. The approach is designed to solve a set of n equations with n unknowns, [A][X]=[C], where [A]nxn is a square coefficient matrix, [X]nx1 is the solution vector, and [C]nx1 is the right hand side array. Naïve Gauss consists of two steps: 1) Forward Elimination: In this step, the coefficient matrix [A] is reduced to an upper triangular matrix. This way, the equations are "reduced" to one equation and one unknown in each equation. 2) Back Substitution: In this step, starting from the last equation, each of the unknowns is found. A simulation of Naïve Gauss Elimination Method follows. Below are the input parameters to begin the simulation. Input Parameters: n = number of equations [A] = nxn coefficient matrix [RHS] = nx1 right hand side array _____ These are the default parameters used in the simulation. They can be changed in the top part of the M-file n= б A = 12 7e-013 3 6.0007 5 б 1 7 1 5 9 8 13 12 4 8 4 6 7 7 3 1.003 5.6 4 1 2 3 4 5 6 7 5 б 7 5 6

RHS =

	22	
7e-	-007	
29	.001	
5	.301	
	9	
	90	

With these inputs, to conduct Naïve Gauss Elimination, Matlab will combine the [A] and [RHS] matrices into one augmented matrix, [C](n*(n+1)), that will facilitate the process of forward elimination.

C =

12	7e-013	3	6.0007	5	6	22
1	5	1	9	7	8	7e-007
13	12	4	8	4	б	29.001
5.6	3	7	1.003	7	4	5.301
1	2	3	4	5	б	9
6	7	5	б	7	5	90

Forward elimination consists of (n-1) steps. In each step k of forward elimination,

the coefficient element of the kth unknown will be zeroed from every

subsequent equation that follows the kth row. For example, in step 2 (i.e. k=2),

the coefficient of x2 will be zeroed from rows 3..n.

With each step that is conducted, a new matrix is generated until the coefficient matrix ${f arkappa}$ is

transformed to an upper triangular matrix. Now, Matlab calculates the upper triangular matrix while demonstrating the intermediate coefficient matrices that are produced for each step k.

C =

12	7e-013	3	6.0007	5	б	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	12	0.75	1.4992	-1.4167	-0.5	5.1677
0	3	5.6	-1.7973	4.6667	1.2	-4.9657
0	2	2.75	3.4999	4.5833	5.5	7.1667
0	7	3.5	2.9996	4.5	2	79

The elements in column #1 below C[1,1] are zeroed

C =

12	7e-013	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	0	-1.05	-18.901	-17.217	-18.5	9.5677

0	0	5 15	-6 8973	0 71667	-3.3	-3 8657	
0	0		0.099965				
0	0	2.45	-8,9003	-4.7167	-8.5		
Ū	°,	2.10	0.2000			01.007	
The	elements	in column	#2 below C	[2,2] are	zeroed		
===:		===== Ster	o 3 ======				
C =							
	7e-013		6.0007			22	
0					7.5		
0	0				-18.5		
0	0				-94.038		
0	0				-40.667		
0	0	0	-53.002	-44.889	-51.667	103.89	
The	elements	in column	#3 below C	[3,3] are	zeroed		
===:		===== Ster	o 4 ======				
		_					
C =							
12	7e-013	З	6 0007	5	б	22	
0					7.5		
0	0		-18.901			9.5677	
				-17.217	-94.038	9.3077	
0	0	0					
0	0				0.87753		
0	0	0	0	-0.33408	-1.6249	80.976	
The	elements	in column	#4 below C	[4,4] are	zeroed		
		Stor	p 5 ======				
			, J				
C =							
12	7e-013	3	6.0007	5	6	22	
0	5	0.75	8.4999	-		-1.8333	
0	0	-1.05				9.5677	
0	0	0	-99.6				
0	0	0	0.00	-1.2333		11.201	
0	0	0	0	0	-1.8626	77.942	
The	elements	in column	#5 below C	[5,5] are	zeroed		
This	s is the e	end of the	forward el	imination	steps. The	coefficient	matrix
			upper tria				
A =							
12	7e-013	3		5	6		
0	5	0.75	8.4999	6.5833	7.5		

5/21/07 3	3:41 PM	M MATLAB Command Window				4 of
0	0	-1.05	-18.901	-17.217	-18.5	
0	0	0	-99.6	-83.727	-94.038	
0	0	0	0	-1.2333	0.87753	
0	0	0	0	0	-1.8626	
RHS =						
22						
-1.8333						
9.5677						
43.061						
11.201						
77.942						
* * * * * * * *	* * * * * * * *	* * * * * * * *	* * * * * * * * * * *	****Back s	ubstitution*****	******
Deals aub	atitutia	n hogin	a with colu	ting the l	at equation as i	t has only one unknown

Back substitution begins with solving the last equation as it has only one unknown. The remaining equations can be solved for using the following formula:

 $x[i]=(C[i]-(sum{A[i,j]*X[j]}))/(A[i,i])$

Using back substitution, we get the unknowns as:

X =

-41.846 -38.858 71.742 73.925 -19.484 -15.409

>>