```
Naïve Gaussian Elimination Method
University of South Florida
United States of America
kaw@eng.usf.edu
```

NOTE: This worksheet demonstrates the use of Matlab to illustrate Naïve Gaussian Elimination, a numerical technique used in solving a system of simultaneous linear equations.

```
**************************************Introduction****************************************
```

One of the most popular numerical techniques for solving simultaneous linear equations is Naïve Gaussian Elimination method.
The approach is designed to solve a set of n equations with n unknowns, $[A][X]=[C]$, where $[A] n x n$ is a square coefficient matrix, [X]nx1 is the solution vector, and $[C] n \times 1$ is the right hand side array.

Naïve Gauss consists of two steps:

1) Forward Elimination: In this step, the coefficient matrix [A] is reduced to an upper triangular matrix. This way, the equations are "reduced" to one equation and one unknown
in each equation.
2) Back Substitution: In this step, starting from the last equation, each of the unknowns is found.

A simulation of Naïve Gauss Elimination Method follows.
Below are the input parameters to begin the simulation.
Input Parameters:
$\mathrm{n}=$ number of equations
[A] = nxn coefficient matrix
[RHS] = nx1 right hand side array

These are the default parameters used in the simulation.
They can be changed in the top part of the M-file
$n=6$
$A=$

12	$7 \mathrm{e}-013$	3	6.0007	5	6
1	5	1	9	7	8
13	12	4	8	4	6
5.6	3	7	1.003	7	4
1	2	3	4	5	6
6	7	5	6	7	5

RHS =

22
7e-007
29.001
5.301

9
90

With these inputs, to conduct Naïve Gauss Elimination, Matlab will combine the [A] and [RHS] matrices into one augmented matrix, [C](n*(n+1)), that will facilitate the process of forward elimination.
$C=$

12	$7 \mathrm{e}-013$	3	6.0007	5	6	22
1	5	1	9	7	8	$7 \mathrm{e}-007$
13	12	4	8	4	6	29.001
5.6	3	7	1.003	7	4	5.301
1	2	3	4	5	6	9
6	7	5	6	7	5	90

Forward elimination consists of (n-1) steps. In each step k of forward elimination, the coefficient element of the kth unknown will be zeroed from every subsequent equation that follows the kth row. For example, in step 2 (i.e. k=2), the coefficient of $x 2$ will be zeroed from rows 3..n.
With each step that is conducted, a new matrix is generated until the coefficient matrixk is
transformed to an upper triangular matrix. Now, Matlab calculates the upper triangular matrix while demonstrating the intermediate coefficient matrices that are produced for each step k.

$\mathrm{C}=$						
12	7e-013	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	12	0.75	1.4992	-1.4167	-0.5	5.1677
0	3	5.6	-1.7973	4.6667	1.2	-4.9657
0	2	2.75	3.4999	4.5833	5.5	7.1667
0	7	3.5	2.9996	4.5	2	79

The elements in column \#1 below $C[1,1]$ are zeroed

$$
\text { ================== Step } 2 \text { ========================= }
$$

$C=$

12	$7 \mathrm{e}-013$	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	0	-1.05	-18.901	-17.217	-18.5	9.5677

0	0	5.15	-6.8973	0.71667	-3.3	-3.8657
0	0	2.45	0.099965	1.95	2.5	7.9
0	0	2.45	-8.9003	-4.7167	-8.5	81.567

The elements in column \#2 below C[2,2] are zeroed

$\mathrm{C}=$						
12	7e-013	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	0	-1.05	-18.901	-17.217	-18.5	9.5677
0	0	0	-99.6	-83.727	-94.038	43.061
0	0	0	-44.001	-38.222	-40.667	30.225
0	0	0	-53.002	-44.889	-51.667	103.89

The elements in column \#3 below $C[3,3]$ are zeroed

$$
\text { ================== Step } 4 \text { ========================= }
$$

$C=$

12	$7 \mathrm{e}-013$	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	0	-1.05	-18.901	-17.217	-18.5	9.5677
0	0	0	-99.6	-83.727	-94.038	43.061
0	0	0	0	-1.2333	0.87753	11.201
0	0	0	0	-0.33408	-1.6249	80.976

The elements in column \#4 below C[4,4] are zeroed
================== Step 5 =========================
$C=$

12	$7 \mathrm{e}-013$	3	6.0007	5	6	22
0	5	0.75	8.4999	6.5833	7.5	-1.8333
0	0	-1.05	-18.901	-17.217	-18.5	9.5677
0	0	0	-99.6	-83.727	-94.038	43.061
0	0	0	0	-1.2333	0.87753	11.201
0	0	0	0	0	-1.8626	77.942

The elements in column \#5 below $C[5,5]$ are zeroed
This is the end of the forward elimination steps. The coefficient matrix has been reduced to an upper triangular matrix

A =

12	$7 \mathrm{e}-013$	3	6.0007	5	6
0	5	0.75	8.4999	6.5833	7.5

0	0	-1.05	-18.901	-17.217	-18.5
0	0	0	-99.6	-83.727	-94.038
0	0	0	0	-1.2333	0.87753
0	0	0	0	0	-1.8626
RHS $=$					

Back substitution

Back substitution begins with solving the last equation as it has only one unknown. The remaining equations can be solved for using the following formula:

$$
x[i]=(C[i]-(\operatorname{sum}\{A[i, j] * x[j]\})) /(A[i, i]
$$

Using back substitution, we get the unknowns as:

X =
-41.846
-38.858
71.742
73.925
-19.484
-15.409
>>

