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Chapter 11.04

Discrete Fourier Transform
Introduction

Recalled the exponential form of Fourier series (see Equations 18 and 20 from Chapter 11.02),
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     (18, Ch. 11.02)
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     (20, Ch. 11.02)

While the above integral can be used to compute 
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, it is more preferable to have a discretized formula version to compute 
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. Furthermore, the Discrete Fourier Transform (or DFT) [1–5] will also facilitate the development of much more efficient algorithms for Fast Fourier Transform (or FFT), to be discussed in Chapters 11.05 and 11.06.
Derivations of DFT Formulas

If time “
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Then Equation (18, of Chapter 11.02) becomes
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To simplify the notation, define
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Then, Equations (1) can be written as
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In the above formula, “
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” is an integer counter. However, 
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Multiplying both sides of Equation (3) by
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Switching the order of summations on the right-hand-side of Equation (6), one obtains
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Define
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There are 2 possibilities for (
[image: image20.wmf]1

-

k

) to be considered in Equation (8)

Case(1): (
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Thus, Equation (8) becomes:
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Hence:
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Case(2): (
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In this case, from Equation (8) one has
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Define:
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Then, Equation (11) can be expressed as
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From mathematical handbooks, the right side of Equation (14) represents the “geometric series”, and can be expressed as
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Because of Equation (13), hence Equation (16) should be used to compute 
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Substituting Equation (17) into Equation (18), one gets
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Thus, combining the results of case (1) and case (2), one gets (see Equations (10) and Equation (19))
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Substituting Equation (20) into Equation (8), and then referring to Equation (7), one gets
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Recalled 
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Equation (20a) can, therefore, be simplified to
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Thus

[image: image60.wmf]å

-

=

-

÷

ø

ö

ç

è

æ

=

=

1

0

0

)

(

1

~

~

N

n

n

ikw

k

l

e

n

f

N

C

C

  
           




           (21)
     
[image: image61.wmf]{

}

å

-

=

-

÷

ø

ö

ç

è

æ

=

1

0

0

0

)

sin(

)

cos(

)

(

1

N

n

n

kw

i

n

kw

n

f

N


where 

[image: image62.wmf]n

t

n

º


and


[image: image63.wmf]å

-

=

=

1

0

0

~

)

(

N

k

n

ikw

k

e

C

n

f

                                                                                       (3, repeated)
        
[image: image64.wmf]{

}

å

-

=

+

=

1

0

0

0

)

sin(

)

cos(

~

N

k

k

n

kw

i

n

kw

C




       
Remarks:

(a) Consider the exponential term in Equation (1). Let 
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If one replaces “
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Thus, Equation (1) indicates that the force corresponding to frequencies of order “
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and the frequency corresponding to 
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is the highest frequency that can be considered in the discrete Fourier series (
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 is called the Nyquist frequency). If there are harmonic (force) components above 
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 in the original function, then these higher components will introduce distortions in the lower harmonic components (known as ALIASING phenomenon). Because of the ALIASING phenomenon, the number of (
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then, the minimum value of 
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(b) The factor 
[image: image84.wmf],

1

÷

ø

ö

ç

è

æ

N

 shown in the DFT Equation (21), is merely a scale factor. It can also be placed in the inverse Fourier Transform Equation (1), but not both.
Thus, Equations (21) and (1) can be re written as
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To avoid computation with “complex numbers”, Equation (22) can be expressed as
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where
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The above “complex number” equation is equivalent to the following 2 “real number” equations
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Computer program implementation for the DFT equations (22c, 22d) are given at http://numericalmethods.eng.usf.edu/simulations/mtl/11fft/dft.m .
Detailed Explanation About Aliasing Phenomenon, Nyquist Samples, Nyquist Rate. 

When a function 
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 can be recovered through interpolation process of these discrete sample values.
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	Figure 1 Function to be Sampled and “Aliased” Sample Problem.


In Figure 1, the samples have been taken with a fairly large 
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 Thus, these sequence of discrete data will not be able to recover the original signal function
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	[image: image111.jpg]Fio]

t

fy

A M






	Figure 2 Function to be sampled and “Windowing” Sample Problem.


Another potential difficulty in sampling the function is called “windowing” problem. As indicated in Figure 2, while 
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 is small enough so that a piecewise linear interpolation for connecting these discrete values will adequately resemble the original function 
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To avoid aliased phenomenon, the sample space 
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The above “sampling theorem” can be loosely explained through the help of Figure 3.
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	Figure 3 Frequency of sampling rate (
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Physically, the above equation states that one must have at least 2 samples per cycle of the highest frequency component present (Nyquist samples, Nyquist rate).
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	Figure 4 Correctly reconstructed signal.
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	Figure 5 Wrongly reconstructed signal.


In Figure 4, a sinusoidal signal is sampled at the rate of 6 samples per 1 cycle (or 
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