Gauss Quadrature Rule of Integration

Major: All Engineering Majors

Authors: Autar Kaw, Charlie Barker

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates
Gauss Quadrature Rule of Integration

http://numericalmethods.eng.usf.edu
What is Integration?

Integration

The process of measuring the area under a curve.

\[I = \int_{a}^{b} f(x) \, dx \]

Where:
- \(f(x) \) is the integrand
- \(a \) = lower limit of integration
- \(b \) = upper limit of integration
Two-Point Gaussian Quadrature Rule
Previously, the Trapezoidal Rule was developed by the method of undetermined coefficients. The result of that development is summarized below.

\[
\int_{a}^{b} f(x) \, dx \approx c_1 f(a) + c_2 f(b)
\]

\[
= \frac{b-a}{2} f(a) + \frac{b-a}{2} f(b)
\]
Basis of the Gaussian Quadrature Rule

The two-point Gauss Quadrature Rule is an extension of the Trapezoidal Rule approximation where the arguments of the function are not predetermined as a and b, but as unknowns x_1 and x_2. In the two-point Gauss Quadrature Rule, the integral is approximated as

$$ I = \int_{a}^{b} f(x) \, dx \approx c_1 f(x_1) + c_2 f(x_2) $$
Basis of the Gaussian Quadrature Rule

The four unknowns x_1, x_2, c_1 and c_2 are found by assuming that the formula gives exact results for integrating a general third order polynomial,

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

Hence

$$\int_a^b f(x) \, dx = \int_a^b \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 \right) \, dx$$

$$= \left[a_0 x + a_1 \frac{x^2}{2} + a_2 \frac{x^3}{3} + a_3 \frac{x^4}{4} \right]_a^b$$

$$= a_0 (b - a) + a_1 \left(\frac{b^2 - a^2}{2} \right) + a_2 \left(\frac{b^3 - a^3}{3} \right) + a_3 \left(\frac{b^4 - a^4}{4} \right)$$
Basis of the Gaussian Quadrature Rule

It follows that

$$\int_a^b f(x)dx = c_1 \left(a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3\right) + c_2 \left(a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3\right)$$

Equating Equations the two previous two expressions yield

$$a_0 (b - a) + a_1 \left(\frac{b^2 - a^2}{2}\right) + a_2 \left(\frac{b^3 - a^3}{3}\right) + a_3 \left(\frac{b^4 - a^4}{4}\right) = c_1 \left(a_0 + a_1 x_1 + a_2 x_1^2 + a_3 x_1^3\right) + c_2 \left(a_0 + a_1 x_2 + a_2 x_2^2 + a_3 x_2^3\right)$$

$$= a_0 (c_1 + c_2) + a_1 \left(c_1 x_1 + c_2 x_2\right) + a_2 \left(c_1 x_1^2 + c_2 x_2^2\right) + a_3 \left(c_1 x_1^3 + c_2 x_2^3\right)$$
Basis of the Gaussian Quadrature Rule

Since the constants a_0, a_1, a_2, a_3 are arbitrary

\[b - a = c_1 + c_2 \]

\[\frac{b^2 - a^2}{2} = c_1 x_1 + c_2 x_2 \]

\[\frac{b^3 - a^3}{3} = c_1 x_1^2 + c_2 x_2^2 \]

\[\frac{b^4 - a^4}{4} = c_1 x_1^3 + c_2 x_2^3 \]
Basis of Gauss Quadrature

The previous four simultaneous nonlinear Equations have only one acceptable solution,

\[
x_1 = \left(\frac{b-a}{2} \right) \left(-\frac{1}{\sqrt{3}} \right) + \frac{b+a}{2}
\]

\[
x_2 = \left(\frac{b-a}{2} \right) \left(\frac{1}{\sqrt{3}} \right) + \frac{b+a}{2}
\]

\[
c_1 = \frac{b-a}{2}
\]

\[
c_2 = \frac{b-a}{2}
\]
Basis of Gauss Quadrature

Hence Two-Point Gaussian Quadrature Rule

\[\int_{a}^{b} f(x)dx \approx c_1 f(x_1) + c_2 f(x_2) \]

\[
= \frac{b-a}{2} \left(\frac{b-a}{2} \left(-\frac{1}{\sqrt{3}} \right) + \frac{b+a}{2} \right) + \frac{b-a}{2} \left(\frac{b-a}{2} \left(\frac{1}{\sqrt{3}} \right) + \frac{b+a}{2} \right)
\]
Higher Point Gaussian Quadrature Formulas
Higher Point Gaussian Quadrature Formulas

\[\int_{a}^{b} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2) + c_3 f(x_3) \]

is called the three-point Gauss Quadrature Rule. The coefficients \(c_1, c_2, \) and \(c_3, \) and the functional arguments \(x_1, x_2, \) and \(x_3 \) are calculated by assuming the formula gives exact expressions for integrating a fifth order polynomial

\[\int_{a}^{b} \left(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5 \right) dx \]

General \(n \)-point rules would approximate the integral

\[\int_{a}^{b} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2) + \ldots + c_n f(x_n) \]
Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

In handbooks, coefficients and arguments given for n-point Gauss Quadrature Rule are as shown in Table 1.

\[\int_{-1}^{1} g(x) dx \approx \sum_{i=1}^{n} c_i g(x_i) \]

as shown in Table 1.

<table>
<thead>
<tr>
<th>Points</th>
<th>Weighting Factors</th>
<th>Function Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(c_1 = 1.000000000) (c_2 = 1.000000000)</td>
<td>(x_1 = -0.577350269) (x_2 = 0.577350269)</td>
</tr>
<tr>
<td>3</td>
<td>(c_1 = 0.555555556) (c_2 = 0.888888889) (c_3 = 0.555555556)</td>
<td>(x_1 = -0.774596669) (x_2 = 0.000000000) (x_3 = 0.774596669)</td>
</tr>
<tr>
<td>4</td>
<td>(c_1 = 0.347854845) (c_2 = 0.652145155) (c_3 = 0.652145155) (c_4 = 0.347854845)</td>
<td>(x_1 = -0.861136312) (x_2 = -0.339981044) (x_3 = 0.339981044) (x_4 = 0.861136312)</td>
</tr>
</tbody>
</table>
Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

Table 1 (cont.) : Weighting factors c and function arguments x used in Gauss Quadrature Formulas.

<table>
<thead>
<tr>
<th>Points</th>
<th>Weighting Factors</th>
<th>Function Arguments</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>$c_1 = 0.236926885$</td>
<td>$x_1 = -0.906179846$</td>
</tr>
<tr>
<td></td>
<td>$c_2 = 0.478628670$</td>
<td>$x_2 = -0.538469310$</td>
</tr>
<tr>
<td></td>
<td>$c_3 = 0.568888889$</td>
<td>$x_3 = 0.000000000$</td>
</tr>
<tr>
<td></td>
<td>$c_4 = 0.478628670$</td>
<td>$x_4 = 0.538469310$</td>
</tr>
<tr>
<td></td>
<td>$c_5 = 0.236926885$</td>
<td>$x_5 = 0.906179846$</td>
</tr>
<tr>
<td>6</td>
<td>$c_1 = 0.171324492$</td>
<td>$x_1 = -0.932469514$</td>
</tr>
<tr>
<td></td>
<td>$c_2 = 0.360761573$</td>
<td>$x_2 = -0.661209386$</td>
</tr>
<tr>
<td></td>
<td>$c_3 = 0.467913935$</td>
<td>$x_3 = -0.2386191860$</td>
</tr>
<tr>
<td></td>
<td>$c_4 = 0.467913935$</td>
<td>$x_4 = 0.2386191860$</td>
</tr>
<tr>
<td></td>
<td>$c_5 = 0.360761573$</td>
<td>$x_5 = 0.661209386$</td>
</tr>
<tr>
<td></td>
<td>$c_6 = 0.171324492$</td>
<td>$x_6 = 0.932469514$</td>
</tr>
</tbody>
</table>
Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

So if the table is given for \(\int_{-1}^{1} g(x) \, dx \) integrals, how does one solve \(\int_{a}^{b} f(x) \, dx \)? The answer lies in that any integral with limits of \([a, b]\) can be converted into an integral with limits \([-1, 1]\). Let

\[
x = mt + c
\]

If \(x = a \), then \(t = -1 \)

If \(x = b \), then \(t = 1 \)

Such that:

\[
m = \frac{b - a}{2}
\]
Arguments and Weighing Factors for n-point Gauss Quadrature Formulas

Then \[c = \frac{b + a}{2} \]

Hence

\[x = \frac{b - a}{2} t + \frac{b + a}{2} \]
\[dx = \frac{b - a}{2} dt \]

Substituting our values of \(x \), and \(dx \) into the integral gives us

\[\int_{a}^{b} f(x) dx = \int_{-1}^{1} f\left(\frac{b - a}{2} t + \frac{b + a}{2} \right) \frac{b - a}{2} dt \]
Example 1

For an integral \(\int_{a}^{b} f(x) \, dx \), derive the one-point Gaussian Quadrature Rule.

Solution

The one-point Gaussian Quadrature Rule is

\[
\int_{a}^{b} f(x) \, dx \approx c_1 f(x_1)
\]
Solution

The two unknowns x_{1}, and c_{1} are found by assuming that the formula gives exact results for integrating a general first order polynomial,

$$f(x) = a_{0} + a_{1}x.$$

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} (a_{0} + a_{1}x)dx$$

$$= \left[a_{0}x + a_{1} \frac{x^{2}}{2} \right]_{a}^{b}$$

$$= a_{0}(b - a) + a_{1}\left(\frac{b^{2} - a^{2}}{2}\right)$$
Solution

It follows that

\[\int_{a}^{b} f(x)\,dx = c_1(a_0 + a_1x_1) \]

Equating Equations, the two previous two expressions yield

\[a_0(b - a) + a_1\left(\frac{b^2 - a^2}{2}\right) = c_1(a_0 + a_1x_1) = a_0(c_1) + a_1(c_1x_1) \]
Basis of the Gaussian Quadrature Rule

Since the constants a_0, and a_1 are arbitrary

$$b - a = c_1$$

$$\frac{b^2 - a^2}{2} = c_1 x_1$$

giving

$$c_1 = b - a$$

$$x_1 = \frac{b + a}{2}$$
Solution

Hence One-Point Gaussian Quadrature Rule

\[
\int_a^b f(x)dx \approx c_1 f(x_1) = (b - a) f\left(\frac{b + a}{2}\right)
\]
Example 2

a) Use two-point Gauss Quadrature Rule to approximate the distance covered by a rocket from $t=8$ to $t=30$ as given by

$$x = \int_{8}^{30} \left(2000 \ln \left(\frac{140000}{140000 - 2100t} \right) - 9.8t \right) dt$$

b) Find the true error, E_t, for part (a).

c) Also, find the absolute relative true error, $|e_a|$, for part (a).
Solution

First, change the limits of integration from \([8,30]\) to \([-1,1]\) by previous relations as follows

\[
\int_{8}^{30} f(t) dt = \frac{30 - 8}{2} \int_{-1}^{1} f\left(\frac{30 - 8}{2} x + \frac{30 + 8}{2}\right) dx
\]

\[
= 11 \int_{-1}^{1} f(11x + 19) dx
\]
Next, get weighting factors and function argument values from Table 1 for the two point rule,

\[c_1 = 1.000000000 \]
\[x_1 = -0.577350269 \]
\[c_2 = 1.000000000 \]
\[x_2 = 0.577350269 \]
Solution (cont.)

Now we can use the Gauss Quadrature formula

\[11 \int_{-1}^{1} f(11x + 19) \, dx \approx 11c_1 f(11x_1 + 19) + 11c_2 f(11x_2 + 19) \]

\[= 11f(11(-0.5773503) + 19) + 11f(11(0.5773503) + 19) \]

\[= 11f(12.64915) + 11f(25.35085) \]

\[= 11(296.8317) + 11(708.4811) \]

\[= 11058.44 \, m \]
Solution (cont)

since

\[f(12.64915) = 2000 \ln \left[\frac{140000}{140000 - 2100(12.64915)} \right] - 9.8(12.64915) \]

\[= 296.8317 \]

\[f(25.35085) = 2000 \ln \left[\frac{140000}{140000 - 2100(25.35085)} \right] - 9.8(25.35085) \]

\[= 708.4811 \]
Solution (cont)

b) The true error, E_t, is

$$E_t = True \ Value - Approximate \ Value$$

$$= 11061.34 - 11058.44$$

$$= 2.9000 \ m$$

c) The absolute relative true error, $|\varepsilon_t|$, is (Exact value = 11061.34m)

$$|\varepsilon_t| = \left| \frac{11061.34 - 11058.44}{11061.34} \right| \times 100\%$$

$$= 0.0262\%$$
Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/gauss_quadrature.html
THE END

http://numericalmethods.eng.usf.edu