Chapter 03.07
Newton-Raphson Method of Solving Simultaneous
Nonlinear Equations

After reading this chapter, you should be able to:

1. derive the Newton-Raphson method formula for simultaneous nonlinear
equations,

2. develop the algorithm of the Newton-Raphson method for solving simultaneous
nonlinear equations,

3. use the Newton-Raphson method to solve a set of simultaneous nonlinear
equations,

4. model a real-life problem that results in a set of simultaneous nonlinear
equations.

Introduction

Several physical systems result in a mathematical model in terms of simultaneous nonlinear
equations. A set of such equations can be written as
f,(X, X000y X,) =0

(X, X000, X,) =0
1)
The solution to these simultaneous nonlinear equations are values of Xx,,X,,..., X, which

satisfy all the above n equations. The number of set of solutions to these equations could be
none, unique, more than one but finite, or infinite. In this chapter, we use the Newton-
Raphson method to solve these equations.

The Newton-Raphson method of solving a single nonlinear equation, f(x)=0, can be
derived using first-order Taylor series (first two terms of Taylor series) and are given by

f(x.0) = F06)+ F/O60)X0—%) ()
where

X, = previous estimate of root

X;,, = present estimate of root

Since we are looking for x_ where f(x._,)becomes zero, Equation (2) can be re-written as



0=f(x)+ ') (X — %)
and then as a recursive formula as
f(x)
X =X —
f'(x)

Derivation

Now how do we extend the same to simultaneous nonlinear equations?
simplicity, let us limit the number of nonlinear equations to two as

u(x,y)=0

v(x,y)=0

The first order Taylor-series for nonlinear equation is (4a) & (4b) are

ou ou

U(Xi+l’ yi+1) = U(Xi, y|) +& Xi\Yi (Xi+1 o Xi) +g X, Yi (yi+l - y|)
ov ov

V(Xi+1' yi+1) = V(Xi' yl) +& X, Yi (Xi+l - Xi) +5 Xi Vi (yi+1 - yl)

We are looking for (x,,,, y;.,) Where u(x.,,Y,,;) and v(x_,, Y,,,) are zero. Hence

ou
Xi\Yi (Xi+1 - Xi) +——

ou
O=u(x,y)+— X,y VYisr — Y
(.y)+ax & YY)

ov ov
0=v(x;, yi)+& Xi\Yi (X1 = %) +E xi,yi(yi+l_ Yi)
Writing
X — % = AX
Yia — Yi =AY
we get
ou ou
O=u(X,y;)+—|, , AX+—|, , A
(I y) 8X iYi ay iYi y
ov ov
0=v(X,y))+—|, , AX+—|, , A
(I y)+aX i Yi +ay iYi y
Rewriting Equations (8a) and (8b)
ou ou
— AX+— Ay =—u(X;, Y;
pw LR oyl Y (%, 1)
ov ov
— AX+— Ay =-V(X;, Y,
pw IR oy y =-Vv(X,Y:)
and then in the matrix form
o a
ox Y py A =u(X,Y;)
v ay] v y)
OX Xi+Yi ay Xi+Yi
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Solving Equation (10) would give us AxandAy. Since the previous estimate of the root
is(x:, Y;), one can find from Equation (7)
Xii = X +AX (11a)
Yia =Y +AY (11b)
This process is repeated till one obtains the root of the equation within a prespecified
tolerance, g, such that

2| =275 %100 < 4,
Xi+1
le,| =[P %100 <6,
y y
i+1
Example 1
Find the roots of the simultaneous nonlinear equations
x* +y? =50
Xx—-y=10
Use an initial guess of (x, y) = (2,—4) . Conduct two iterations.
Solution
First put the equations in the form
u(x,y)=0
v(x,y)=0

to give
u(x,y)=x*+y*-50=0
v(X,y)=x—-y-10=0

Now

6_u:2X
OX
a_u=2y
oy

N _4
OX
N_ 4
oy

Hence from Equation (10)
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[ou au
& X Yi 5 Xi»Yi AX _U(Xi’ yl)
@X_ | ﬂx. LAy —V(X;, Y;)
ox ! oy ]
(2% 2y, [AX] _[-x* -y, +50
_1 -1 Ay B —Xi+yi+10
Iteration 1
The initial guess
(Xi' yl) = (2!_4)

Hence
{2(2) 2(—4)}{&} |- (2)? = (-4)* +50
1 -1 |Ay] | —(2)+(-4)+10

4 -8|Ax| (30
1 -1|ay| |4
Solving the equations by any method of your choice, we get

Ax =0.5000
Ay =-3.500
Since
AX =X, — X, =0.5000
Ay =y, -y, =-3.500
we get
X, = X, +0.5000
=2+0.5000
=2.5000
Yy, =Y, +(-3.500)
=-4+(-3.500)
=-7.500
The absolute relative approximate errors at the end of the first iteration are
X, =X

x100

|ga|x

X2
_|2.500—2.000

2.500
=20.00%

|x100



Yo=Y

| a|y =22 211%100
_|-7.500- (—4.000)|><100
| -7500 |
=46.67%

Iteration 2

The estimate of the root at the end of iteration#1 is
(X,,Y,) =(2.500 - 7.500)
Hence
[2(2.500) 2(-7.500) [ Ax] |- (2.500)* - (~7.500)* +50
1 -1 Ly} { — (2.500) + (~7.500) + 10

5 -15] Ax| [-12.50
1 -1]ay] | O
Solving the above equations by any method of your choice gives

Ax =1.250
Ay =1.250
Since
AX =X, — X, =1.250
Ay =y,-Yy, =1.250
giving
X; = X, +1.250

=2.500+1.250
=3.750

Y, =Y, +1.250
=-7.500+1.250

=-6.250

The absolute relative approximate error at the end of the second iteration is

X3 =%
X3

x100

|€a|x =

_|3.750-25
3.750
—33.33%

|x100



Chapter 03.07

Y= Y2l100
e

_|-6.250-(-7.500)| .4,
| -6250 |
= 20.00%

Although not asked in the example problem statement, the estimated values of the root and
the absolute relative approximate errors are given below in Table 1.

&|
|ay

Table 1: Estimate of the root and absolute relative approximate error.

Iteration X, Y, |Ea|x% |€a|y%
number, j

1 2.500 -7.500 20.00 46.67
2 3.750 -6.250 33.33 20.00
3 4.375 -5.625 14.29 11.11
4 4.688 -5.312 6.667 5.882
5 4.844 -5.156 3.226 3.030
6 4.922 -5.078 1.587 1.538

The exact solution to which the above scheme is converging to is (X, y) = (5,-5)

Example 2

A 5m long gutter is made from a flat sheet of aluminum which is 5mx0.21m. The shape of
the gutter cross-section is shown in Figure 1, and is made by bending the sheet at two
locations at an angle 6 (Figure 2). What are the values of s and 4, that will maximize the
volume capacity of the gutter so that it drains water quickly during a heavy rainfall?

Figure 1 Sheet metal bent to form a gutter



|<— L-2s 4>|

Figure 2: Parameters of the gutter

Figure 3: Labeling the parameters and points of the gutter

Solution

One needs to maximize the cross-sectional area of the gutter. The cross-sectional area G of
the gutter is given by
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G = Area of trapezoid ABCD

=%(AB+CD)(FC) (E2.1)
where
AB=L-2s (E2.2)
CD =AB+EA+BF
= (L-2s) + scos(#)+scos(d)
=(L-2s) + 2scos(d) (E2.3)
FC = BC sin(9)
= ssin(0) (E2.4)
hence
= %(AB + CD) (DE)
G(s,0)= %[(L —25) +(L—2s) +2scos(¥)] s sin(8)
=[L—2s +scos(8)] ssin(9) (E2.5)
For example, for 6 = 0°, the cross-sectional area of the gutter becomes
G=0
as it represents a flat sheet, for § =180°, the cross-sectional area of the gutter becomes
G=0

as it represents an overlapped sheet, and for 6 =90°, it represents a rectangular cross-
sectional area with
G=(L-29)s.

For the given L =0.21m,
G(s,0)=(0.21-2s+scosH)ssin g
Then

86_62 —s?sin® @ +(0.21— 2s + s cos §)s cos @
S

%: (-2+cos@)ssin@+(0.21+ 2s+scosd)sin &

By solving the equations

f (s,0) =—ssin” @+ (0.21-2s+sc0sd)scosd =0

f,(s,0)=(-2+cos@)ssinf +(0.21-2s+scosH)sind =0
we can find the local minimas and maximas of G(s, 8). One of the local maximas may also
be the absolute maximum. The values of s and @ that correspond to the maximum of
G(s,0) are what we are looking for. Can you solve the equations to find the corresponding
values of s and @ for maximum value of G ? Intuitively, what do you think would be these
values of s and 67



Appendix A: General matrix form of solving simultaneous nonlinear equations.
The general system of equations is given by

fL (X, %Xy, X,) =0

(%, %y, X,) =0

(A.1)
(X, X500, X,) =0
We can rewrite in a form as
F(x)=0 (A.2)
where
f, ()
A fZ(X)
F(x) = _ (A3)
.00
o
0
0= (A.4)
_O_
o7
Xl
X2
X=| . (A.5)
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The Jacobian of the system of equations by using Newton-Raphson method then is

o, o,

X OX,
J (X, Xy peey X)) =

a, o,

ox, oX, |

(A.6)

Using the Jacobian for the Newton-Raphson method guess

[3]Ax=-F(x)
where
AX = Xnew— Xald
Hence
Ax=-JIT'F(x)
Xrew— Xola = —[I]*F (%)

)A(new = )A(old - [J ]71 F ()A()

Evaluating the inverse of [J] in Equation (A.10) is

solving Equation (A.7) for A xand calculating Xnewas

A A N
Xnew = Xold + AX

(A7)

(A.8)

(A.10)

computationally more intensive than

(A.11)
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