
 
 
 
 
 
Chapter 03.07 
Newton-Raphson Method of Solving Simultaneous 
Nonlinear Equations 
 
 
After reading this chapter, you should be able to: 
 

1. derive the Newton-Raphson method formula for simultaneous nonlinear 
equations, 

2. develop the algorithm of the Newton-Raphson method for solving simultaneous 
nonlinear equations, 

3. use the Newton-Raphson method to solve a set of simultaneous nonlinear 
equations, 

4. model a real-life problem that results in a set of simultaneous nonlinear 
equations. 
 

Introduction 
Several physical systems result in a mathematical model in terms of simultaneous nonlinear 
equations. A set of such equations can be written as 
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            (1) 
The solution to these simultaneous nonlinear equations are values of nxxx ,...,, 21 which 
satisfy all the above n  equations. The number of set of solutions to these equations could be 
none, unique, more than one but finite, or infinite. In this chapter, we use the Newton-
Raphson method to solve these equations. 
 
The Newton-Raphson method of solving a single nonlinear equation, 0)( =xf , can be 
derived using first-order Taylor series (first two terms of Taylor series) and are given by 
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where 
 =ix  previous estimate of root 
 =+1ix  present estimate of root 
Since we are looking for 

1+ix where )( 1+ixf becomes zero, Equation (2) can be re-written as  
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and then as a recursive formula as 
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Derivation 
Now how do we extend the same to simultaneous nonlinear equations?  For sake of 
simplicity, let us limit the number of nonlinear equations to two as  

0),( =yxu                     (4a) 
0),( =yxv                     (4b) 

 
The first order Taylor-series for nonlinear equation is (4a) & (4b) are 
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We are looking for ),( 11 ++ ii yx where ),( 11 ++ ii yxu and ),( 11 ++ ii yxv are zero. Hence 
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Writing  
xxx ii ∆=−+1                     (7a) 

 yyy ii ∆=−+1                     (7b) 
we get 
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Rewriting Equations (8a) and (8b)  
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and then in the matrix form 
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Solving Equation (10) would give us x∆ and y∆ . Since the previous estimate of the root 
is ),( ii yx , one can find from Equation (7) 

xxx ii ∆+=+1                   (11a) 
yyy ii ∆+=+1                  (11b) 

This process is repeated till one obtains the root of the equation within a prespecified 
tolerance, sε  such that 
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Example 1  
Find the roots of the simultaneous nonlinear equations 
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Use an initial guess of )4,2(),( −=yx . Conduct two iterations. 
Solution 
First put the equations in the form 
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Hence from Equation (10) 
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Iteration 1 
The initial guess  

)4,2(),( −=ii yx  
Hence 










+−+−
+−−−

=







∆
∆









−
−

10)4()2(
50)4()2(

11
)4(2)2(2 22

y
x

 









=








∆
∆









−
−

4
30

11
84

y
x

 

Solving the equations by any method of your choice, we get 
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The absolute relative approximate errors at the end of the first iteration are 
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Iteration 2 
The estimate of the root at the end of iteration#1 is  

)500.7500.2(),( 22 −=yx  
Hence 
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Solving the above equations by any method of your choice gives 
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The absolute relative approximate error at the end of the second iteration is  
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Although not asked in the example problem statement, the estimated values of the root and 
the absolute relative approximate errors are given below in Table 1. 
 
Table 1: Estimate of the root and absolute relative approximate error.  

Iteration 
number, i  

ix  iy  %
xa∈  %

ya∈  

1 2.500 -7.500 20.00 46.67 
2 3.750 -6.250 33.33 20.00 
3 4.375 -5.625 14.29 11.11 
4 4.688 -5.312 6.667 5.882 
5 4.844 -5.156 3.226 3.030 
6 4.922 -5.078 1.587 1.538 

 
The exact solution to which the above scheme is converging to is )5,5(),( −=yx  
 
Example 2 
A 5m long gutter is made from a flat sheet of aluminum which is 5m×0.21m. The shape of 
the gutter cross-section is shown in Figure 1, and is made by bending the sheet at two 
locations at an angle θ (Figure 2).  What are the values of s  and θ , that will maximize the 
volume capacity of the gutter so that it drains water quickly during a heavy rainfall? 
 

 
                                            Figure 1 Sheet metal bent to form a gutter 
 



Newton-Raphson Method of Solving Simultaneous Nonlinear Equations                      03.07.7 

 
                                        Figure 2: Parameters of the gutter 

 
                                             Figure 3: Labeling the parameters and points of the gutter 

 
Solution 

One needs to maximize the cross-sectional area of the gutter.  The cross-sectional area G  of 
the gutter is given by 
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 ABCDG d  trapezoiofArea =  
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where 
 sAB = L 2−                                                                                                          (E2.2) 

BFEACD = AB ++  
       )cos()cos()2( θsθ s sL= ++−  
       )cos(2)2( θs  sL +−=                                                                                  (E2.3) 

)sin(θBC  FC =  
        )sin(θs=                                                                                                        (E2.4) 

hence  

 )()(
2
1 DE AB + CDG=  

[ ] )sin()cos(2)2()2(
2
1),( θ s θssLsL= θsG +−+−    

[ ] )sin()cos(2 θ sθssL +−=                                                                      (E2.5) 
For example, for °= 0θ , the cross-sectional area of the gutter becomes  

0=G    
as it represents a flat sheet, for °= 180θ , the cross-sectional area of the gutter becomes  

0=G  
as it represents an overlapped sheet, and for °= 90θ , it represents a rectangular cross-
sectional area with 

 ssLG )2( −= . 
 
For the given L =0.21m,  
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By solving the equations 
0cos)cos221.0(sin),( 2

1 =+−+−= θθθθ sssssf  
0sin)cos221.0(sin)cos2(),(2 =+−++−= θθθθθ ssssf  

we can find the local minimas and maximas of ),( θsG . One of the local maximas may also 
be the absolute maximum.  The values of s  and θ that correspond to the maximum of 

),( θsG  are what we are looking for. Can you solve the equations to find the corresponding 
values of s  and θ  for maximum value of G ?  Intuitively, what do you think would be these 
values of s  and θ ? 
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Appendix A: General matrix form of solving simultaneous nonlinear equations.  
The general system of equations is given by  
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We can rewrite in a form as 
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The Jacobian of the system of equations by using Newton-Raphson method then is 
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Using the Jacobian for the Newton-Raphson method guess 
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Hence 
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Evaluating the inverse of [ ]J  in Equation (A.10) is computationally more intensive than 

solving Equation (A.7) for 
∧

∆ x and calculating newx
∧

as 
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