Secant Method

Computer Engineering Majors

Authors: Autar Kaw, Jai Paul

http://numericalmethods.eng.usf.edu
Transforming Numerical Methods Education for STEM Undergraduates
Secant Method

http://numericalmethods.eng.usf.edu
Secant Method – Derivation

Newton’s Method

\[x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \]

(1)

Approximate the derivative

\[f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \]

(2)

Substituting Equation (2) into Equation (1) gives the Secant method

\[x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \]
Secant Method – Derivation

The secant method can also be derived from geometry:

The Geometric Similar Triangles

\[
\frac{AB}{AE} = \frac{DC}{DE}
\]

can be written as

\[
\frac{f(x_i)}{x_i - x_{i+1}} = \frac{f(x_{i-1})}{x_{i-1} - x_{i+1}}
\]

On rearranging, the secant method is given as

\[
x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}
\]
Algorithm for Secant Method
Step 1

Calculate the next estimate of the root from two initial guesses

\[x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})} \]

Find the absolute relative approximate error

\[|\epsilon_a| = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| \times 100 \]
Step 2

Find if the absolute relative approximate error is greater than the prespecified relative error tolerance.

If so, go back to step 1, else stop the algorithm.

Also check if the number of iterations has exceeded the maximum number of iterations.
Example 1

To find the inverse of a number ‘a’, one can use the equation

\[f(x) = a - \frac{1}{x} = 0 \]

where \(x \) is the inverse of ‘a’.

Use the Secant method of finding roots of equations to

- Find the inverse of \(a = 2.5 \). Conduct three iterations to estimate the root of the above equation.
- Find the absolute relative approximate error at the end of each iteration, and
- The number of significant digits at least correct at the end of each iteration.
Example 1 Cont.

Solution

\[f(x) = a - \frac{1}{x} = 0 \]

\[x_{i+1} = x_i - \frac{\left(a - \frac{1}{x_i} \right)(x_i - x_{i-1})}{\left(a - \frac{1}{x_i} \right) - \left(a - \frac{1}{x_{i-1}} \right)} \]

\[= x_i - \frac{1}{x_i - x_{i-1}} \]

\[= x_i - x_i x_{i-1} \left(a - \frac{1}{x_i} \right) \]

\[= x_i - x_{i-1}(ax_i - 1) \]

Figure 3 Graph of the function \(f(x) \).
Example 1 Cont.

Initial guesses:
\[x_{-1} = 0.1 \text{ and } x_0 = 0.6 \]

Iteration 1

The estimate of the root is
\[x_1 = x_0 - x_{-1}(ax_0 - 1) \]
\[x_1 = 0.6 - 0.1(2.5(0.6) - 1) \]
\[= 0.55 \]

The absolute relative approximate error is
\[|\varepsilon_a| = \left| \frac{x_1 - x_0}{x_1} \right| \times 100 \]
\[= 9.0909\% \]

The number of significant digits at least correct is 0.

Figure 4 Graph of the estimated root after Iteration 1.
Example 1 Cont.

Iteration 2
The estimate of the root is
\[x_0 = 0.6, x_1 = 0.55 \]
\[x_2 = x_1 - x_0(ax_1 - 1) \]
\[x_2 = 0.55 - 0.6(2.5(0.55) - 1) \]
\[= 0.325 \]

The absolute relative approximate error is
\[|\epsilon_a| = \left| \frac{x_2 - x_1}{x_2} \right| \times 100 \]
\[= 69.231\% \]

The number of significant digits at least correct is 0.

Figure 5 Graph of the estimated root after Iteration 2.
Example 1 Cont.

Iteration 3

The estimate of the root is

\[x_1 = 0.55, \ x_2 = 0.325 \]

\[x_3 = x_2 - x_1 (ax_2 - 1) \]

\[x_3 = 0.325 - 0.55(2.5(0.325) - 1) \]

\[= 0.42813 \]

The absolute relative approximate error is

\[|\varepsilon_a| = \left| \frac{x_3 - x_2}{x_2} \right| \times 100 \]

\[= 24.088\% \]

The number of significant digits at least correct is 0.

Figure 6 Graph of the estimated root after Iteration 3.
Advantages

- Converges fast, if it converges
- Requires two guesses that do not need to bracket the root
Drawbacks

- Division by zero

Division by zero

\[f(x) = \sin(x) = 0 \]
Drawbacks (continued)

Root Jumping

\[f(x) = \sin(x) = 0 \]

Graph showing root finding process with initial guesses and secant line approximation.
Additional Resources

For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

http://numericalmethods.eng.usf.edu/topics/secant_method.html