Multiple-Choice Test

Chapter 06.03
Linear Regression

1. Given \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), best fitting data to \(y = f(x)\) by least squares requires minimization of

(A) \(\sum_{i=1}^{n} [y_i - f(x_i)]\)

(B) \(\sum_{i=1}^{n} |y_i - f(x_i)|\)

(C) \(\sum_{i=1}^{n} (y_i - f(x_i))^2\)

(D) \(\sum_{i=1}^{n} [y_i - \bar{y}]^2, \quad \bar{y} = \frac{\sum_{i=1}^{n} y_i}{n}\)

2. The following data

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

is regressed with least squares regression to \(y = a_0 + a_1x\). The value of \(a_1\) most nearly is

(A) 27.480
(B) 28.956
(C) 32.625
(D) 40.000

3. The following data is regressed with least squares regression to \(y = a_0 + a_1x\). The value of \(a_1\) most nearly is

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>y</td>
<td>1</td>
<td>400</td>
<td>800</td>
</tr>
</tbody>
</table>

(A) 27.480
(B) 28.956
(C) 32.625
(D) 40.000
4. An instructor gives the same \(y \) vs. \(x \) data as given below to four students and asks them to regress the data with least squares regression to \(y = a_0 + a_1 x \).

\[
\begin{array}{c|cccc}
 x & 1 & 10 & 20 & 30 & 40 \\
 \hline
 y & 100 & 400 & 600 & 1200 \\
\end{array}
\]

They each come up with four different answers for the straight-line regression model. Only one is correct. The correct model is

(A) \(y = 60x - 1200 \)

(B) \(y = 30x - 200 \)

(C) \(y = -139.43 + 29.684x \)

(D) \(y = 1 + 22.782x \)

5. A torsion spring of a mousetrap is twisted through an angle of \(180^\circ \). The torque vs. angle data is given below.

<table>
<thead>
<tr>
<th>Torsion, (T) (N-m)</th>
<th>0.110</th>
<th>0.189</th>
<th>0.230</th>
<th>0.250</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle, (\theta) (rad)</td>
<td>0.10</td>
<td>0.50</td>
<td>1.1</td>
<td>1.5</td>
</tr>
</tbody>
</table>

The relationship between the torque and the angle is \(T = a_0 + a_1 \theta \).

The amount of strain energy stored in the mousetrap spring in Joules is

(A) 0.29872

(B) 0.41740

(C) 0.84208

(D) 1561.8

6. A scientist finds that regressing the \(y \) vs. \(x \) data given below to \(y = a_0 + a_1 x \) results in the coefficient of determination for the straight-line model, \(r^2 \) being zero.

\[
\begin{array}{c|ccc}
 x & 1 & 3 & 11 & 17 \\
 \hline
 y & 2 & 6 & 22 & ? \\
\end{array}
\]

The missing value for \(y \) at \(x = 17 \) most nearly is

(A) \(-2.4444\)

(B) 2.000

(C) 6.889

(D) 34.00

For a complete solution, refer to the links at the end of the book.