Holistic Numerical Methods Institute

committed to bringing numerical methods to undergraduates

Multiple-Choice Test Background Regression

COMPLETE SOLUTION SET

- 1). The average of 7 numbers is given 12.6. If 6 of the numbers are 5, 7, 9, 12,17 and 10, the remaining number is
 - (A) -47.9
 - (B) -47.4
 - (C) 15.6
 - (D) 28.2

Solution

The correct answer is (D)

If x is the remaining number, then

$$\frac{5+7+9+12+17+10+x}{7} = 12.6$$

$$x = (12.6 \times 7) - (5+7+9+12+17+10)$$

$$= 88.2 - (60)$$

$$= 28.2$$

2). The average and standard deviation of 7 numbers is given a 8.142 and 5.005, respectively. If 5 numbers are 5, 7, 9, 12 and 17, the other two numbers are

$$(A) -0.1738, 7.175$$

Solution

The correct answer is (D)

Let *x* and *y* be the two missing numbers.

From the average of the numbers being 8.142, we have

$$\frac{5+7+9+12+17+x+y}{7} = 8.142$$

$$x+y = (8.142 \times 7) - (5+7+9+12+17)$$

$$x+y=7$$
(1)

From the standard deviation being 5.005, we have

$$\sqrt{\frac{(5 - 8.142)^2 + (7 - 8.142)^2 + (9 - 8.142)^2 + (12 - 8.142)^2}{+(17 - 8.142)^2 + (x - 8.142)^2 + (y - 8.142)^2}} = 5.005$$

$$(x - 8.142)^{2} + (y - 8.142)^{2} =$$

$$(5.005^{2} \times 6) - ((5 - 8.142)^{2} + (7 - 8.142)^{2} + (9 - 8.142)^{2} + (12 - 8.142)^{2}$$

$$+ (17 - 8.142)^{2})$$

$$x^{2} - 16.284x + 66.292 + y^{2} - 16.284y + 66.292 = 45.039$$

$$x^{2} + y^{2} - 16.284(x + y) = -87.544$$
(2)

From Equation (1)

$$x = 7 - v$$

then

$$(7 - y)^2 + y^2 - 16.284(7 - y) - 16.2840y = -87.544$$

 $y^2 - 14y + 49 + y^2 + 16.284y - 16.284y - 113.988 = -87.544$
 $2y^2 - 14y - 64.988 = -87.544$
 $2y^2 - 14y + 22.556 = 0$

Using the quadratic equation solution

$$y = \frac{-(-14) \pm \sqrt{(-14)^2 - 4 \times 2 \times 22.556}}{2 \times 2}$$

$$= \frac{14 \pm \sqrt{15.552}}{4}$$
gives
$$y = 4.488$$
or
$$y = 2.512$$
Thus,
$$x = 2.512$$
or
$$x = 4.488$$

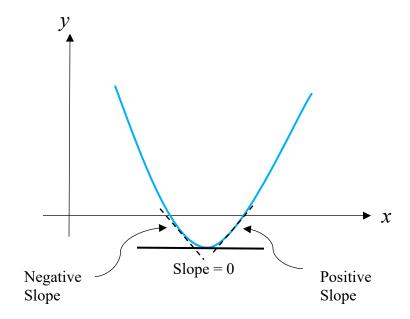
Hence (x, y) = (4.488, 2.512) or (2.512, 4.488), which are the same pair of numbers.

- 3). A local minimum of a continuous function in the interval $(-\infty, \infty)$ exists at x = a if
- (A) f'(a) = 0, f''(a) = 0(B) f'(a) = 0, f''(a) < 0
- (C) f'(a) = 0, f''(a) > 0
- (D) f'(a) = 0, f''(a) does not exist

Solution

The correct answer is (C)

A continuous function whose slope f'(x) is zero at x = a will correspond to a local minimum if the slope at x = a – is negative and the slope at x = a + is positive. This would imply f'' > 0.



4). The absolute minimum of a function $f(x) = x^2 + 2x - 15$ in the interval $(-\infty, \infty)$ exists at $x = -\infty$ and is

(A)
$$\overline{x = -1}$$
, $f(-1) = -16$

(B)
$$x = -1$$
, $f(-1) = 0$

(C)
$$x = 3, f(3) = 0$$

(D)
$$x = 5, f(5) = 0$$

Solution

The correct answer is (A)

Given

$$f(x) = x^2 + 2x - 15$$

then

$$f'(x) = 2x + 2$$

To find the critical points, put

$$f'(x) = 0$$

gives

$$2x + 2 = 0$$
$$x = -1$$

Since the first derivative, f'(x) is defined in the domain $(-\infty, \infty)$, and f'(x) = 0 at x = -1, it is the only critical point.

$$f''(x) = 2$$
$$f''(-1) = 2$$

And since f''(-1) > 0, the critical point x = -1 corresponds to a local minimum.

Since f'(x) = 0 at only one point x = -1 and the function f(x) is continuous in $(-\infty, \infty)$, it also corresponds to the absolute minimum. So, the absolute minimum exists at x = -1 and it is

$$f(-1) = (-1)^2 + 2(-1) - 15$$

= -16

5). The first order partial derivative with respect to x of $u(x,y) = x^2y^3 + 6x^3e^{2y}$

(A)
$$y^3 + 6e^{2y}$$

(B)
$$3x^2y^2 + 18x^3e^{2y}$$

(A)
$$y = 6c$$

(B) $3x^2y^2 + 18x^3e^{2y}$
(C) $2xy^3 + 18x^2e^{2y}$
(D) $2xy^3 + 24x^2e^{2y}$

(D)
$$2xy^3 + 24x^2e^{2y}$$

Solution

The correct answer is (C)

$$u(x,y) = x^{2}y^{3} + 6x^{3}e^{2y}$$

$$\frac{\partial y}{\partial x} = \frac{\partial}{\partial x}(x^{2}y^{3} + 6x^{3}e^{2y})$$

$$= y^{3}\frac{\partial}{\partial x}(x^{2}) + e^{2y}\frac{\partial}{\partial x}(6x^{3})$$

$$= y^{3}(2x) + e^{2y}(18x^{2})$$

$$= 2xy^{3} + 18x^{2}e^{2y}$$

(6). The critical point(s) (x, y) of the function $f(x, y) = y^3 + 4xy - 16y - 4x^2$ is (are)

(A) (-4/3,1), (-8/3,2)

(B) (4/3,8/3), (-1,-2)

(C)(-4/3, -8/3), (1,2)

(D)(0,0)

Solution

The correct answer is (C)

 $f(x,y) = y^3 + 4xy - 16y - 4x^2$

The critical points are where

 $\frac{\partial f}{\partial x} = 0$ and $\frac{\partial f}{\partial y} = 0$

or where

 $\frac{\partial f}{\partial x}$ or $\frac{\partial f}{\partial y}$ do not exist

$$\frac{\partial f}{\partial x} = 4y - 8x$$
$$\frac{\partial f}{\partial y} = 3y^2 + 4x - 16$$

Since $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are defined everywhere in $(-\infty, \infty)$, we only need to seek points where

$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial f}{\partial y} = 0$

$$\frac{\partial f}{\partial x} = 0$$

$$4y - 8x = 0$$

$$y = 2x$$

$$\frac{\partial f}{\partial y} = 0$$

$$3y^2 + 4x - 16 = 0$$

$$3(2x)^2 + 4x - 16 = 0$$

$$12x^2 + 4x - 16 = 0$$

$$x = \frac{-4 \pm \sqrt{16 - 4(12)(-16)}}{2(12)}$$

$$= -\frac{4}{3}, 1$$

From y = 2x, the corresponding values of y are

$$y = -\frac{8}{3}, 2$$

So $\left(-\frac{4}{3}, -\frac{8}{3}\right)$ and (1,2) are the two critical points.