1. Given \([A] = \begin{bmatrix} 6 & 2 & 3 & 9 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 4 & 5 \\ 0 & 0 & 0 & 6 \end{bmatrix} \) then \([A]\) is a _____________ matrix.

(A) diagonal
(B) identity
(C) lower triangular
(D) upper triangular

2. A square matrix \([A]\) is lower triangular if

 (A) \(a_{ij} = 0, j > i \)

 (B) \(a_{ij} = 0, i > j \)

 (C) \(a_{ij} \neq 0, i > j \)

 (D) \(a_{ij} \neq 0, j > i \)

3. Given
 \[
 [A] = \begin{bmatrix} 12.3 & -12.3 & 20.3 \\ 11.3 & -10.3 & -11.3 \\ 10.3 & -11.3 & -12.3 \end{bmatrix}, \quad [B] = \begin{bmatrix} 2 & 4 \\ -5 & 6 \\ 11 & -20 \end{bmatrix}
 \]
 then if
 \[
 [C] = [A] [B], \quad c_{31} = _______________
 \]

(A) -58.2
(B) -37.6
(C) 219.4
(D) 259.4
4. The following system of equations has ____________ solution(s).
 \[\begin{align*}
 x + y &= 2 \\
 6x + 6y &= 12
 \end{align*} \]
 (A) infinite
 (B) no
 (C) two
 (D) unique

5. Consider there are only two computer companies in a country. The companies are named Dude and Imac. Each year, company Dude keeps \(\frac{1}{5} \)th of its customers, while the rest switch to Imac. Each year, Imac keeps \(\frac{1}{3} \)rd of its customers, while the rest switch to Dude. If in 2003, Dude had \(\frac{1}{6} \)th of the market and Imac had \(\frac{5}{6} \)th of the market, what will be share of Dude computers when the market becomes stable?
 (A) \(\frac{37}{90} \)
 (B) \(\frac{5}{11} \)
 (C) \(\frac{6}{11} \)
 (D) \(\frac{53}{90} \)

6. Three kids - Jim, Corey and David receive an inheritance of $2,253,453. The money is put in three trusts but is not divided equally to begin with. Corey's trust is three times that of David's because Corey made an A in Dr. Kaw’s class. Each trust is put in an interest generating investment. The three trusts of Jim, Corey and David pays an interest of 6%, 8%, 11%, respectively. The total interest of all the three trusts combined at the end of the first year is $190,740.57. The equations to find the trust money of Jim \(J \), Corey \(C \) and David \(D \) in a matrix form is
 (A) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 3 & -1 \\
 0.06 & 0.08 & 0.11
 \end{bmatrix}
 \begin{bmatrix}
 J \\
 C \\
 D
 \end{bmatrix}
 =
 \begin{bmatrix}
 2,253,453 \\
 0 \\
 190,740.57
 \end{bmatrix}
 \]
 (B) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 1 & -3 \\
 0.06 & 0.08 & 0.11
 \end{bmatrix}
 \begin{bmatrix}
 J \\
 C \\
 D
 \end{bmatrix}
 =
 \begin{bmatrix}
 2,253,453 \\
 0 \\
 190,740.57
 \end{bmatrix}
 \]
 (C) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 1 & -3 \\
 6 & 8 & 11
 \end{bmatrix}
 \begin{bmatrix}
 J \\
 C \\
 D
 \end{bmatrix}
 =
 \begin{bmatrix}
 2,253,453 \\
 0 \\
 190,740.57
 \end{bmatrix}
 \]
 (D) \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 0 & 3 & -1 \\
 6 & 8 & 11
 \end{bmatrix}
 \begin{bmatrix}
 J \\
 C \\
 D
 \end{bmatrix}
 =
 \begin{bmatrix}
 2,253,453 \\
 0 \\
 19,074,057
 \end{bmatrix}
 \]