Multiple-Choice Test

Chapter 03.04
Newton-Raphson Method

1. The Newton-Raphson method of finding roots of nonlinear equations falls under the category of _____________ methods.
 (A) bracketing
 (B) open
 (C) random
 (D) graphical

2. The Newton-Raphson method formula for finding the square root of a real number \(R \) from the equation \(x^2 - R = 0 \) is,
 (A) \(x_{i+1} = \frac{x_i}{2} \)
 (B) \(x_{i+1} = \frac{3x_i}{2} \)
 (C) \(x_{i+1} = \frac{1}{2} \left(x_i + \frac{R}{x_i} \right) \)
 (D) \(x_{i+1} = \frac{1}{2} \left(3x_i - \frac{R}{x_i} \right) \)

3. The next iterative value of the root of \(x^2 - 4 = 0 \) using the Newton-Raphson method, if the initial guess is 3, is
 (A) 1.5
 (B) 2.067
 (C) 2.167
 (D) 3.000

4. The root of the equation \(f(x) = 0 \) is found by using the Newton-Raphson method. The initial estimate of the root is \(x_0 = 3 \), \(f(3) = 5 \). The angle the line tangent to the function \(f(x) \) makes at \(x = 3 \) is 57° with respect to the \(x \)-axis. The next estimate of the root, \(x_i \), most nearly is
 (A) -3.2470
 (B) -0.2470
 (C) 3.2470
 (D) 6.2470
5. The root of \(x^3 = 4 \) is found by using the Newton-Raphson method. The successive iterative values of the root are given in the table below.

<table>
<thead>
<tr>
<th>Iteration Number</th>
<th>Value of Root</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.0000</td>
</tr>
<tr>
<td>1</td>
<td>1.6667</td>
</tr>
<tr>
<td>2</td>
<td>1.5911</td>
</tr>
<tr>
<td>3</td>
<td>1.5874</td>
</tr>
<tr>
<td>4</td>
<td>1.5874</td>
</tr>
</tbody>
</table>

The iteration number at which I would first trust at least two significant digits in the answer is

(A) 1
(B) 2
(C) 3
(D) 4

6. The ideal gas law is given by

\[p v = R T \]

where \(p \) is the pressure, \(v \) is the specific volume, \(R \) is the universal gas constant, and \(T \) is the absolute temperature. This equation is only accurate for a limited range of pressure and temperature. Vander Waals came up with an equation that was accurate for larger ranges of pressure and temperature given by

\[\left(p + \frac{a}{v^2} \right) (v - b) = RT \]

where \(a \) and \(b \) are empirical constants dependent on a particular gas. Given the value of \(R = 0.08, \ a = 3.592, \ b = 0.04267, \ p = 10 \) and \(T = 300 \) (assume all units are consistent), one is going to find the specific volume, \(v \), for the above values. Without finding the solution from the Vander Waals equation, what would be a good initial guess for \(v \)?

(A) 0
(B) 1.2
(C) 2.4
(D) 3.6

For a complete solution, refer to the links at the end of the book.