Chapter 03.05
Secant Method of Solving Nonlinear Equations

After reading this chapter, you should be able to:

1. derive the secant method to solve for the roots of a nonlinear equation,
2. use the secant method to numerically solve a nonlinear equation.

What is the secant method and why would I want to use it instead of the Newton-Raphson method?

The Newton-Raphson method of solving a nonlinear equation \(f(x) = 0 \) is given by the iterative formula

\[
x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}
\]

One of the drawbacks of the Newton-Raphson method is that you have to evaluate the derivative of the function. With availability of symbolic manipulators such as Maple, MathCAD, MATHEMATICA and MATLAB, this process has become more convenient. However, it still can be a laborious process, and even intractable if the function is derived as part of a numerical scheme. To overcome these drawbacks, the derivative of the function, \(f(x) \) is approximated as

\[
f'(x_i) \approx \frac{f(x_j) - f(x_{i-1})}{x_i - x_{i-1}}
\]

Substituting Equation (2) in Equation (1) gives

\[
x_{i+1} = x_i - \frac{f(x_j)(x_i - x_{i-1})}{f(x_j) - f(x_{i-1})}
\]

The above equation is called the secant method. This method now requires two initial guesses, but unlike the bisection method, the two initial guesses do not need to bracket the root of the equation. The secant method is an open method and may or may not converge. However, when secant method converges, it will typically converge faster than the bisection method. However, since the derivative is approximated as given by Equation (2), it typically converges slower than the Newton-Raphson method.
The secant method can also be derived from geometry, as shown in Figure 1. Taking two initial guesses, \(x_{i-1}\) and \(x_i\), one draws a straight line between \(f(x_i)\) and \(f(x_{i-1})\) passing through the \(x\)-axis at \(x_{i+1}\). \(ABE\) and \(DCE\) are similar triangles.

Hence

\[
\frac{AB}{AE} = \frac{DC}{DE} \quad \frac{f(x_i)}{x_i - x_{i+1}} = \frac{f(x_{i-1})}{x_{i-1} - x_{i+1}}
\]

On rearranging, the secant method is given as

\[
x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}
\]

Figure 1 Geometrical representation of the secant method.

Example 1

You are making a bookshelf to carry books that range from 8½" to 11" in height and would take up 29" of space along the length. The material is wood having a Young’s Modulus of 3.667 Msi, thickness of 3/8" and width of 12". You want to find the maximum vertical deflection of the bookshelf. The vertical deflection of the shelf is given by

\[
v(x) = 0.42493 \times 10^{-4} x^3 - 0.13533 \times 10^{-8} x^5 - 0.66722 \times 10^{-6} x^4 - 0.018507 x
\]

where \(x\) is the position along the length of the beam. Hence to find the maximum deflection we need to find where \(f(x) = \frac{dy}{dx} = 0\) and conduct the second derivative test.
The equation that gives the position \(x \) where the deflection is maximum is given by

\[-0.67665 \times 10^{-8} x^4 - 0.26689 \times 10^{-5} x^3 + 0.12748 \times 10^{-3} x^2 - 0.018507 = 0\]

Use the secant method of finding roots of equations to find the position \(x \) where the deflection is maximum. Conduct three iterations to estimate the root of the above equation. Find the absolute relative approximate error at the end of each iteration and the number of significant digits at least correct at the end of each iteration.

Solution

Let us take the initial guesses of the root of \(f(x) = 0 \) as \(x_{-1} = 10 \) and \(x_0 = 15 \).

Iteration 1

The estimate of the root is

\[x_1 = x_0 - \frac{f(x_0)(x_0 - x_{-1})}{f(x_0) - f(x_{-1})} \]

\[f(x_0) = -0.67665 \times 10^{-8} x_0^4 - 0.26689 \times 10^{-5} x_0^3 + 0.12748 \times 10^{-3} x_0^2 - 0.018507 \]
\[= -0.67665 \times 10^{-8}(15)^4 - 0.26689 \times 10^{-5}(15)^3 + 0.12748 \times 10^{-3}(15)^2 - 0.018507 \]
\[= 8.2591 \times 10^{-4} \]

\[f(x_{-1}) = -0.67665 \times 10^{-8} x_{-1}^4 - 0.26689 \times 10^{-5} x_{-1}^3 + 0.12748 \times 10^{-3} x_{-1}^2 - 0.018507 \]
\[= -0.67665 \times 10^{-8}(10)^4 - 0.26689 \times 10^{-5}(10)^3 + 0.12748 \times 10^{-3}(10)^2 - 0.018507 \]
\[= -8.4956 \times 10^{-3} \]

\[x_1 = 15 - \frac{(8.2591 \times 10^{-4}) \times (15 - 10)}{(8.2591 \times 10^{-4}) - (-8.4956 \times 10^{-3})} \]
\[= 14.557 \]

The absolute relative approximate error \(|\varepsilon| \) at the end of Iteration 1 is

\[|\varepsilon| = \left| \frac{x_1 - x_0}{x_1} \right| \times 100 \]
\[= \left| \frac{14.557 - 15}{14.557} \right| \times 100 \]
\[= 3.0433\% \]

The number of significant digits at least correct is 1, because the absolute relative approximate error is less than 5%.

Iteration 2
The estimate of the root is
\[x_2 = x_1 - \frac{f(x_1)(x_1 - x_0)}{f(x_1) - f(x_0)} \]
\[f(x_1) = -0.67665 \times 10^{-8} x_1^4 - 0.26689 \times 10^{-5} x_1^3 + 0.12748 \times 10^{-3} x_1^2 - 0.018507 \]
\[= -0.67665 \times 10^{-8} (14.557)^4 - 0.26689 \times 10^{-5} (14.557)^3 \]
\[+ 0.12748 \times 10^{-3} (14.557)^2 - 0.018507 \]
\[= -2.9870 \times 10^{-5} \]
\[x_2 = 15 - \frac{(-2.9870 \times 10^{-5}) \times (14.557 - 15)}{(-2.9870 \times 10^{-5}) \div (8.2591 \times 10^{-4})} \]
\[= 14.572 \]
The absolute relative approximate error \(|\varepsilon_a|\) at the end of Iteration 2 is
\[|\varepsilon_a| = \left| \frac{x_2 - x_1}{x_2} \right| \times 100 \]
\[= \left| \frac{14.572 - 14.557}{14.572} \right| \times 100 \]
\[= 0.10611\% \]
The number of significant digits at least correct is 2, because the absolute relative approximate error is less than 0.5%.

Iteration 3
The estimate of the root is
\[x_3 = x_2 - \frac{f(x_2)(x_2 - x_1)}{f(x_2) - f(x_1)} \]
\[f(x_2) = -0.67665 \times 10^{-8} x_2^4 - 0.26689 \times 10^{-5} x_2^3 + 0.12748 \times 10^{-3} x_2^2 - 0.018507 \]
\[= -0.67665 \times 10^{-8} (14.572)^4 - 0.26689 \times 10^{-5} (14.572)^3 \]
\[+ 0.12748 \times 10^{-3} (14.572)^2 - 0.018507 \]
\[= -6.0676 \times 10^{-9} \]
\[x_3 = 14.572 - \frac{(-6.0676 \times 10^{-9}) \times (14.572 - 14.557)}{(-6.0676 \times 10^{-9}) \div (-2.9870 \times 10^{-5})} \]
\[= 14.572 \]
The absolute relative approximate error \(|\varepsilon_a|\) at the end of Iteration 3 is
\[
\left| \varepsilon_n \right| = \frac{x_n - x_{n-1}}{x_n} \times 100 \\
= \frac{14.572 - 14.572}{14.572} \times 100 \\
= 2.159 \times 10^{-5}\%
\]

The number of significant digits at least correct is 6, because the absolute relative approximate error is less than 0.00005%.

NONLINEAR EQUATIONS

Topic Secant Method for Solving Nonlinear Equations.

Summary These are textbook notes of secant method of finding roots of nonlinear equations. Derivations and examples are included.

Major Civil Engineering

Authors Autar Kaw

Date November 8, 2012

Web Site http://numericalmethods.eng.usf.edu